Radiall ${ }^{2}$

RF \& MICROWAVE SWITCHES

Coaxial Switching Products

Full Line Catalog

Connectivity has a profound and dramatic impact on the lives of people throughout the world. Because of advancements in technology, our lives are more convenient, more secure, more enjoyable and richer than ever. The speed of data enables communication in the most remote areas so people can reach all corners of the globe, allows for important defense and security, and facilitates space exploration. But technology doesn't just happen. It starts in the mind with ideas, making connections never considered in ways that nobody dreamed possible. Seeing the future in ways previously unimagined is the act of innovation and it begins with people-the inventors, the dreamers, the pioneers and the engineersenriching the lives of billions. At Radiall, we have one single, solitary mission; Empower the people that enrich our lives. Enable their innovation by providing reliability and durability. Give them useful information and provide them with valuable guidance when determining the best course for success. We don't invent the future, we enable it. We inspire innovation, we embrace challenges, we challenge the conventional and we collaborate with you to succeed. At Radiall, we're proud to say - Our most important connection is with you.

Coaxial Switches Navigator

Table of Contents

Technical Information 1
SPDT 2
DP3T and SPDT Terminated 3
DPDT 4
SPnT 5
Low Pim 6
Space 7
Other 8

Company Profile

Our Most Important Connection is with You ${ }^{\text {TM }}$

Radiall is a global leader in the design, development and manufacturing of leading edge interconnect solutions. Dedicated to understanding its customers' needs since 1952, Radiall has earned the reputation of being "the best of the best" in engineering ingenuity by providing a constant flow of creative system solutions serving the defense, telecommunications, aerospace, instrumentation, automotive, industrial, medical and broadcast markets.

Best Value-added Services

Collaboration: We work closely with your engineers to understand your business, your technical needs, and your budgetary issues.

Wide Product Range: We manage our product lines thru the entire lifecycle in order to offer you a wide selection of standard products at an affordable cost.

Custom Products: We can tailor products to specific equipment and application needs.

Global Presence: We're everywhere you need us, with worldwide sales, engineering support, R\&D in North America, Europe, and Asia, and manufacturing facilities strategically located in the United States, Mexico, France, India, and China.

Responsive Support and Service: From the design stage, planning to post-installation support, we're with you at every step, whether you need sales support or engineering expertise.

On-time Delivery: We support your logistical needs so you get the products when and where you need them.

Warranty: We proudly stand behind our products.

Certifications and Environmental

Radiall is ISO 9001: 2008 certified and dedicated to continuous improvement programs that have resulted in also being AS9100, TS16949 and ISO 14001 certified. In addition, Radiall is committed to investing in its people, future technologies and the environment, such as being RoHS (Restriction of Hazardous Substances) and REACH (Registration, Evaluation, Authorization and Restriction of Chemical substances) compliant.

The Best End-to-End Interconnect Solutions

We offer an extensive range of solutions that supports the most demanding signal transmission applications. 4G wireless infrastructure, active array radars, IED's detection, electrical wiring in aircrafts, soldier tactical radios, in-vehicle communications networks, and magnetic resonance imaging systems are just a few of the complex applications that we support.

- RF coaxial connectors
- Fiber optic connectors and transceivers
- Coaxial and fiber optic cable assemblies and harnesses
- High frequency microwave components
- Coaxial switches, including the smallest and most reliable SPDT relay
- Multipin rectangular connectors
- Rack and panel connectors
- Antennas for tactical networks, aerospace and instrumentation

Technical information and sales contacts are available at: www.radiall.com

Radiall at a Glance

Worldwide Presence

Radiall has a global manufacturing presence. Our International sales network and qualified distributors cover every region around the world. The result is quick and insightful answers to all your requests.

- International Sales Network
- Low cost facilities
- Local manufacturing, logistics and technical support

North America

Asia

Europe

Market Focus

Aerospace	Defense	Industrial	Space	Telecom	Instrumentation Medical

Radiall Technologies

- Milling
- Plating \& plastic metallization
- Molding
- Characterization
- Polishing
- Laser, ultrasonic, vapor, soldering
- Stamping
- Thin \& thick film processes
- Etching on Si
- Thick film on AlN
- Test \& measurement
- Simulation
- Cable \& PTFE wrapping
- Automatic assembly
- Micro-machining

A Global Range to Meet Your Needs

RF Coaxial Connectors

Radiall proudly offers the widest range of RF Coaxial Connectors in the Industry with over 12,000 part numbers and 72 product series including AEP® Mil QPL connectors. These precision-made components are a significant part of our heritage and essential to who we are.

Microwave Components

Radiall has a wide range of coaxial devices, including terminations, attenuators, and couplers using standard interfaces from low to high power. Our state of the art techniques enable us to produce microwave components for use in commercial, military, and space applications.

Multipin Connectors

Radiall has an unmatched range of rack and panel connectors and the most innovative modular and tool-less connectors used in harnesses and equipment connections. Our modern designs combine light weight, high performance levels and user friendly features to simplify even the most complex connections.

Space Qualified

Industry leaders across the globe recognize the Radiall brand for quality, reliability, and performance. Our Space Qualified passive product offering includes a wide range of coaxial connectors, cable assemblies, microwave components, and switches with a frequency range up to Ka band.

Harnesses

The combination of design and manufacturing of RF and microwave cables as well as multipin connectors (EPX, ARINC 404 and 600) allows Radiall to be a specialist of harnesses for onboard or land equipment or communications systems. All types of contacts can be used and mixed such as signal, power, RF, quadrax, fiber optic.

RF \& Microwave Switches

All Radiall switches provide exceptional reliability and performance. A unique modular and patented design of the actuator and transmission link enables Radiall to guarantee operation up to 10 million cycles with excellent repeatability, while reducing delivery times.

Antennas

Radiall provides highly reliable antenna solutions for industrial and military applications. Our solutions include Line-Of-Sight tactical communications, vehicular mount, GPS, telemetry, and mesh networks. For optimum performance requirements, Radiall offers custom antenna solutions and support.

RF Cable Assemblies

Radiall has an extensive range of cable assemblies with outstanding electrical performance, low loss, and high frequency. Our range includes flexible, semi rigid and handformable cable assemblies. Our TestPro ${ }^{\text {TM }}$ range meets the stringent requirements needed for test and lab applications.

D-Lightsys ${ }^{\circledR}$

Active Optical Solutions Optimized by D-Lightsys \circledR^{\circledR} for harsh environments. From optical transceivers to the world's smallest parallel optics, D-Lightsys® technologies support the most challenging applications, including harsh environments and avionics applications.

Fiber Optics

Radiall designs and supports high performance end-to-end Optical Interconnect solutions. Our offer includes standard interfaces, termini, connectors, harnesses and custom design optical links and subsystems. The flexibility and high quality of our product range supports harsh environments and demanding applications.

Radiall ${ }^{2}$

Technical Information

 \squareContents
User Handbook -21
Applications 1-22

Coaxial Switches Activity Information

EXPERIENCE

With over 60 years of experience and continuous efforts in R\&D, Radiall has become Europe's number one source for coaxial connectors. Radiall's position as a market leader has enabled the company to excel in the passive microwave component field for more than 50 years. Radiall's expertise in design, development and manufacturing of passive microwave components is widely acknowledged in today's industry.

A WIDE RANGE OF SOLUTIONS

Specialized in passive microwave components, Radiall's design team and engineering staff manufactures a wide range of standard coaxial devices including: terminations, attenuators, couplers, coaxial detectors, coaxial and waveguide switches covering a frequency range from DC to 50 GHz .

RESEARCH AND DEVELOPMENT

Due to the increased complexity of microwave systems more high performance components are required.

To meet these requirements, Radiall's R\&D department is constantly working on development of new products and improvement on existing products.
Equipped with microwave and mechanical CAD and the latest generation of microwave test equipment up to 60 GHz , Radiall uses state-of-the-art technology to optimize products and quickly respond to specific customer requests.

CAPACITIES AND FACILITIES

Radiall's global presence and worldwide facilities offer expertise in the following: marketing, research and development, industrialization, manufacturing and quality control. This strong heritage enables Radiall to produce a range of high performance and low cost devices for industrial applications, and high reliability components for severe requirements in military and space markets.

Head office - Aubervilliers France

Coaxial Switches Activity Information

PRODUCTION

Electrical performance of microwave products is determined by machining quality of individual piece parts and associated plating.

Equipped with computer-controlled machinery, and an in-house plating department, Radiall is able to manufacture high quality piece parts that are compatible with existing components.

Due to the thick and thin film etching equipment, Radiall's production department guarantees the quality of the resistive cells used in most terminated switching products. A prototype workshop allows Radiall to quickly respond to special customer request.

All the phases of manufacturing and test are strictly inspected by our quality department, so as to warrant the constancy of our products and to achieve general and specific requirements.

Radiall's quality department inspects products though all phases of manufacturing and testing, to ensure consistency to all products for customer satisfaction.

QUALITY AND RELIABILITY AND PATENTS

Radiall's main focus for passive microwave components are quality and reliability. ISO 9001 V2008 label is the best evidence of quality assurance interfaces at every stage of a product from designing to manufacturing.

All new products are subject to a rigid qualification program before massive production begins. Additionally, product quality is reviewed and tested periodically.

NATO CODE

Radiall is a qualified microwave components manufacturer under military label (manufacturer code F0503 and F6507), and offers quality assurance developed in accordance with N.A.T.O. standards.

Coaxial Switches Activity Information

A TESTING LABORATORY

As an illutration of Radiall's commitment to quality and reliability, Radiall has an in-house test laboratory qualified by CECC which permits Radiall to complete the majority of tests required by customers.
PARTIAL LIST OF TEST MEANS
Electrical

Breakdown voltage	12 KVolts
Insulation resistance	40.103 MOhms
Contact resistance	$1 \mu O \mathrm{hms}$

Environmental

Vibrations: Sine random	$0-120 \mathrm{~g} ; 5$ to 4000 Hz
Shocks	30 to 1000 g
Shakes	25 to 40 g 6 ms
Thermal vacuum	$10-5 \mathrm{TORR} ;-45$ to $+100^{\circ} \mathrm{C}$
Thermal shock	$-70^{\circ} \mathrm{C}+200^{\circ} \mathrm{C} /$ transfert 20 s
Storage temperature	$-70^{\circ} \mathrm{C}$ to $+200^{\circ} \mathrm{C}$
Humidity	20 to $98 \% \mathrm{HR}$
Salt Spray	$-35^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Hermeticity	Helium $10-5$ to $10-8 \mathrm{~atm} \mathrm{cm3} \mathrm{/s}$

Microwave

V.S.W.R. insertion loss Isolation	Vector Network Analyzer From 0.04 up to 60 GHz TDR 150 ps
RF Leakage/EMC	Reverberation chamber method 0.5 to $20 \mathrm{GHz} /$ Noise 100 dB
Power Handling	400 W CW at 936 MHz 40 W CW at 17.8 GHz 20 W CW 8 up to 18 GHz 100 W CW at 420 MHz

Coaxial Switches Activity Information

CAPABILITIES

Radiall offers a wide variety of coaxial switches to answer customer needs. This catalog is intended to be used as a guide in selecting the right type of switch for a given application. It is important to note that Radiall is not limited to catalog products and has the flexibility to design a specific product on a tight schedule at a reasonable cost. Radiall is always available to discuss specific customer requests.

RELIABILITY

Radiall's coaxial switches offer exceptional reliability and performance. A unique patented design of the actuator and transmission link enables Radiall to guarantee operation up to 10 million cycle for Terminated SPnT, others series as well, with excellent repeatability.

LIST OF APPLICABLE DOCUMENTS

AIR 7304	NFC 93563	MIL C 39012
DIN 47295	NFC 93564	MIL E 5400
NFC 93561	NFC 96317	MIL STD 202
NFC 93562	MIL DTL 3928	154 IEC

List of related covering the general mechanical and environmental tests applicable to the devices described in this catalog.

Coaxial Switches Activity Information

GENERAL SPECIFICATIONS DESIGNED TO MEET MIL DTL 3928 AND MIL STD 202
Environmental Characteristics

Vibrations Method 204	$10-2000 \mathrm{~Hz} \mathrm{10g}$	Operating
Shocks Method 213	$50 \mathrm{~g}, 1 / 2$ sine	Non-operating

Mechanical Characteristics, Material and Finished

RF body	Aluminium, Gold plated Aluminium, Nickel plated Aluminium with Cr3 passivation
Contacts	Beryllium Copper, Gold plated
Insulator	PTFE, ULTEM 1000
Connectors	Stainless stess, passivated brass, Nickel plated
Construction	Splash proof
Cover	Aluminium, blue anodized

Manufacturing and Quality Assurance

Radiall's RF switches product line is made of approximately 20 series of switches, with each series divided into a large number of configurations. Part numbers consist of 9 digits, each digit designating a portion of the parts actual identity (such as series, frequency, actuator voltage, etc....).

For each digit, 2 to 10 options are available. A complete part number represents a unique configuration.

Overall, there are more than 80,000 different configurations available with very few subassemblies due to the modularity of the RAMSES switching line (less than 300 different subassemblies).

A Push-Pull manufacturing process has been implemented to reduce both lead time and inventory. Based upon marketing forecast and monthly updates, various subassemblies are manufactured.

When an order is received, an automated MRP system selects the appropriate subassemblies from stock to manufacture the requested products within a short time frame (a few days to a few weeks) depending on the complexity of the product.

Manufacturing and Quality Assurance Flow

Quality

RAMSES Concept

An innovative system has been designed for constructing electromechanical coaxial RF switches with increased long-term reliability. Radiall's Modular System for Electromechanical Switches (RAMSES) is a patented concept that enables microwave coaxial switches to be produced with a typical operating life of 10 million cycles while suffering no decrease in contact resistance reliability over time. In addition, the unique internal construction makes the switches cost-competitive with traditional switches.

Figure 1: conventional switch contacts after one million cycles

a) RF line open

Friction Effects

The unique design of RAMSES is based on the reduction of friction, which minimizes particle deposits that can interfere with the transmission of lower frequency signals (up to 3 GHz).

This particle elimination effect is particularly important for telecommunication applications that are currently in the 900 MHz and 2 GHz range. In addition, the design involves fewer components compared to other microwave switches, making it quick and easy to assemble.

These savings directly relate to lower cost for improved performance. Many of the existing coaxial electromechanical switches also are able to function mechanically for 10 million operations.

(b) RF line closed

However, the reliability and quality of the electrical contact can decrease over the life cycle.

In general, these traditional switches operate by moving a rectangular switching blade section inside a rectangular cavity. The blades are linked with pushers constructed of dielectric material that travel inside an access hole between the RF cavity and switch actuator. The pushers are directed by dielectric material guides. These dielectric parts rub on the blades and inside the access hole and generate isolating particles in the RF cavity that pollute the electrical contacts and ultimately cause running defects.

Figure 1 shows the build-up of minute dielectric particles on a set of conventional switch contacts after one million cycles. These defects are not particularly noticeable at very high frequencies since the contact is established by a capacitive effect. However the insertion loss of the contacts increases considerably at lower frequencies (3 GHz below).

RAMSES Concept

A New Actuator Configuration

To eliminate this problem of increased insertion loss in the contacts, RAMSES devices incorporate a patented system. This system, compresses two parallel blades suspended from a bearer, which enables the guiding and positioning of the commutation blades to be accomplished entirely outside the RF cavity. These blades impose a rectilinear motion on the switching pusher, suppressing both friction and the production of particles inside the RF cavity. The unique system is extremely small and can be used in all of RAMSES series switches.

Figure 2: cutaway view

Figure 3: a RAMSES set of contacts

a) RF line open

Figure 2 shows a cutaway view of a RAMSES coaxial switch displaying the actuator mechanism. A second improvement involves a new rectilinear actuator design using high energy magnets and a switching performance in relation to its size.

The system is used in the production of both failsafe and latching actuators, depending on how it is applied in the switch. These actuators are either 500 g locking forces or 300 to 800 g current forces for a power consumption of 100 mA at 28 V .

The new actuator has the added advantage of very low magnetic leakage, allowing actuators to be used in close proximity to one another without performance degradation. The use of a dry, solid lubricant and the control of friction areas provide an actuator life expectancy of over 50 million operations without defect when temperature range exceeds -55° to $+85^{\circ} \mathrm{C}$.

(b) RF line closed

Switch Performances

RAMSES series switches have successfully survived tests of 10 million switching temperature cycles from -55° to $+85^{\circ} \mathrm{C}$ while demonstrating good contact resistance stability. Visual inspection of these switches after testing has indicated that the RF lines were free of much of the contamination found during similar tests on traditional switches. A comparison of the actual measured contact resistance obtained from monitoring both conventional and RAMSES switches using several parts that have already been actuated one million cycles is shown in figure 4. Although the conventional switch may not be considered failure, its contact resistance has become unstable, thus degrading its reliability.

Figure 4: A comparison of (a) conventional and

(b) RAMSES switch design contact resistance during one million cycles

CYCLES

RF Arrangement

Coaxial SPDT Switch
(Single Pole Double Throw)

Single pole Double Throw Switch
A switch with one input port and two selectable output ports

Coaxial DP3T Switch

(Double Pole Three Throw)

RF

Double Pole Three Throw switch
A switch with two input ports and three output ports. Each input (J2 - J4) can be switched between two adjacent outputs with one output being common to both inputs

Coaxial Multiposition Switch
(Single Pole n Throw)

Single Pole n Throw Switch ($\mathrm{n}<13$)
A switch with one input port and more than two output ports. The multiposition switch allows direct access to any individual output port by energizing the respective actuator. Radiall SPnT switches provide up to 12 Output ports

Coaxial SPDT Terminated Switch
(Single Pole Double Throw terminated)

Single Pole Double Throw, Terminated switch
Same as SPDT, but the unused output port is automatically terminated by a 50 Ohm resistive load.

Coaxial DPDT Switch
(Double Pole Double Throw)

Double Pole Double Throw Switch
A four port switch with two independent paths that operate simultaneously in one of two selected positions. In a DPDT / Transfer switch, the two transmission paths are provided as shown above

Coaxial Multiposition Terminated Switch
(Single Pole n Throw Terminated)

Single Pole n Throw Terminated Switch ($\mathrm{n}<13$)
Same as SPnT, but each unused output port is automatically terminated in an internal 50 Ohm resistive load.

Glossary

Actuator Voltage: All RAMSES series relays are either 12 or 28 Vdc nominal voltage over the entire temperature range. The switches can be operated with a voltage between -15% and $+10 \%$ of the nominal value. Other voltage as 5,15 or 24 Volts can be supplied at the customer's request.

Automatic "Reset": All Latching version multiposition switches (or SPnT) cause the following scenario:
When a RF path is closed, it remains in the closed position after the voltage is cut-off (latching function). To switch to another path, the first path must be opened via a "RESET" driver, followed by the closing of the second RF path. Without the "RESET" driver, both paths would remain in the ON position at the same time.
To simplify the use of latching products, an "automatic RESET" is recommended. The auto reset feature is accomplished by an electronic circuit which brings about the automatic opening of a previously closed path during changes of position of the switches.
Note: This option produces a higher current consumption during a few milliseconds (see voltage \& current values listed on the product's individual Technical Data Sheet).
BCD (Binary Code Decimal) Driver Interface

BCD logic coding				RF \& Microwave ways position
E4	E3	E2	E1	
0	0	0	0	Latching models: all ways in "OFF" position
0	0	0	0	Normally Open models: memory of last position
0	0	0	1	Way IN - 1 in "ON" position
0	0	1	0	Way IN - 2 in "ON" position
0	0	1	1	Way IN-3 in "ON" position
0	1	0	0	Way IN-4 in "ON" position
0	1	0	1	Way IN - 5 in "ON" position
0	1	1	0	Way IN-6 in "ON" position
0	1	1	1	Way IN-7 in "ON" position
1	0	0	0	Way IN - 8 in "ON" position
1	0	0	1	Way IN-9 in "ON" position
1	0	1	0	Way IN - 10 in "ON" position
1	0	1	1	Way IN - 11 in "ON" position
1	1	0	0	Way IN - 12 in "ON" position
1	1	1	1	Latching models: memory of last position
1	1	1	1	Normally Open models: all ways are in "OFF" position

Note: E1, E2, E3, E4 are BCD driver pins of the product. E4 applies only with 8 positions or more. E3 applies only 4 positions or more.
Break Before Make: Radiall coaxial relays are considered "break before make". In a break before make product the contact of the first path leaves its state before the final contact has been established.

Failsafe: A switch with an actuator that contains a return mechanism, either mechanical or magnetic, that provides RF connection to one selected position when no voltage is applied to the power terminals. This type of switch requires continuous voltage to maintain RF connection to any other position.

Frequency Range: The frequency range for each device indicates the maximum frequency Radiall will guarantee for the products performance.

Indicator Contacts: Electrical contacts of an "open circuit, short-circuit" type, mechanically linked to the actuator and synchronized with switched RF paths, ensure the recopy of positions of RF transmission paths. When a microwave path is switched, the corresponding indicator contact is closed. It is generally used with pilot lamps to indicate position of RF contacts (characteristics are given for a resistive load).

Glossary
Intermodulation (PIM): or intermod for short, is a form of signal distortion that occurs whenever signals of two or more frequencies are produced in a passive device which contains some linear response. This interference includes low contact pressure, dirty interconnects, magnetic materials or other anodic effect.
The typical value for Radiall switches is around 120 dBc (with 2 carriers at +43 dBm), however products can be designed for higher performance upon request.

Isolation: The RF leakage from a connected path to any connector outside that path. Isolation is measured in decibels below the input power.

Latching: A switch with an actuator that contains a mechanism, either mechanical or magnetic, that will maintain a chosen RF contact path whether voltage is maintained or not after switching is accomplished. A pulse length of a duration equal to the maximum switching time is enough to change the switch position.

Life: Number of toggles a product is able to carry out. Relays and switches of RAMSES, PLATINUM and TITANIUM ranges have a life cycle of 2 to 10 million cycles.

Normally Open: is a mode of operation in which all output ports of the switch are disconnected from the input port until a voltage is applied to a selected position.

Switches family	Type of		Pin number	Comments
	Series	Connector		
RAMSES SPDT	SPDT => R570	D-Sub (male)	9 pins	Available only on products described on page 2-20
	SPDT $=>$ R572	N/A		Only solder pins
PLATINUM SPDT	SPDT => R595	D-Sub (male)	9 pins	Non terminated models
RAMSES DPDT	DPDT => R577	D-Sub (male)	9 pins	--
TITANIUM DPDT	DPDT => R513	HE10 ribbon receptacle (male)	10 pins	Delivered with ribbon cable 750 mm (30 inches) + HE10 connector (female)
PLATINUM DPDT	DPDT $=>$ R593			
RAMSES DP3T (1)	DP3T => R585	N/A		Only solder pins
PLATINUM DP3T (1)	DP3T => R595	D-Sub (male)	9 pins	--
RAMSES \& Subminiature SPnT	$\begin{aligned} & \text { SPnT => R573/ } \\ & \text { R574 } 3 \text { to } 10 \end{aligned}$	D-Sub (male)	25 pins	--
	12 positions		44 pins	High density
	SPnT => R591 4 and 6 positions	Micro-D receptacle (female)	9 pins	--
TITANIUM SPnT	SPnT => R514 4 and 6 positions	HE10 ribbon receptacle (male)	16 pins	Delivered with ribbon cable 750 mm (30 inches) + HE10 connector (female)
PLATINUM SPnT	SPnT => R594 4 and 6 positions			

Note (1): Terminated RAMSES \& PLATINUM SPDT are included in R585 \& R595
PLATINUM and TITANIUM series: The RAMSES concept (without friction) and over 40 years of expertise in manufacturing coaxial switches, Radiall's introduces a new range of high performance coaxial switches to the market place: PLATINUM Series.

Following an increasing need in the instrumentation market, Radiall's PLATINUM coaxial switches are optimized for use in automatic test benches or measurement equipment. With a guarantee insertion loss repeatability of 0.03 dB over the life of the product (10 million), PLATINUM Series switches are perfectly suited for applications requiring excellent RF performance. The full range of coaxial switches, such as SPDT-DP3T (R595 series), transfer relay DPDT (R593 series) and multithrow switches SPnT (R594 series), offer the same level of RF performance and are suitable for use in stringent environments.
TITANIUM series offer the same RF performance as PLATINUM series. TITANIUM products are more economically priced due to the reduced number of life cycles guaranteed (2.5 M vs 10M for PLATINUM). This product line is ideal for the Instrumentation market, where RF performance is more critical than the number of actuations guaranteed.

Glossary

Polarity: A common negative polarity is chosen by Radiall for its standard products. An inverted polarity (common plus) is available on RAMSES range, contact Radiall for availability.
Note: For PLATINUM and TITANIUM series, Common plus polarity potential is chosen for its standard products.
RF Power Chart: The RF power rating is the capability of handling RF power (CW power) through closed contacts. The RF power should be removed during switching. Power ratings assume unity V.S.W.R. (matched load) at room temperature $\left(25^{\circ} \mathrm{C}\right)$, sea level pressure (14.7 p.s.i.) and cold switching. See below the CW power capability Vs. Frequency Chart. Changes in these specifications require power derating (see derating factor versus V.S.W.R.).

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea Level
- U.S.W.R.: 1:1 and cold switching

Derating Factor: The average power input must be reduced for load V.S.W.R. above 1:1.

Glossary
Peak Power Handling: The maximum peak power, when applied at room temperature under a pulse of one microsecond every millisecond, will not permanently change the specifications of the switch. Power applied over this limit will alter the RF performance of the switch.

Repeatability: The maximun standard deviation in insertion loss specifications on each path over the life of the product. Insertion loss repeatability is specified for all PLATINUM series (0.03 dB over 10 million) and all TITANIUM series (0.03 dB over 2.5 million).

RF Connectors: RF connectors are 50 or 75 Ohms female, unless otherwise specified. The applicable mating dimensions, materials and finish are in accordance with applicable sections of international standard (MIL C 39012, DIN 47295).

NB RADIALL 75 Ohm coaxial switches are only available with DIN 1.6/5.6 (srew, snap and slide connector) and mini SMB RF connectors.

Self Cut Off: The ability of a switch to disconnect the actuator voltage as soon as the switching of the position is carried out. The system applies to latching relays and is achieved with solid state circuitry. Self Cut-Off time for our RAMSES coaxial switches is from 40 ms to 120 ms .

Solder Pin: RAMSES relays are equiped with solder pins for the control and indicator contacts. The maximum temperature during soldering should not exceed $250^{\circ} \mathrm{C}$ for 30 seconds or $300^{\circ} \mathrm{C}$ for 10 seconds for leadfee soldering process.

Suppression Diodes: Diodes connected in parallel with the coil of a switch to suppress transient voltage generated by the self inductance of the coil during the driver signal cut-off. This option is systematically enclosed in all TTL, SELF CUT-OFF and all electronic interfaces.

Switching Time: The total amount of time between applying voltage to the actuator terminals and the completion of switching (including all contact bounce - if any). Total switching time consists of three parts, namely inductive delay in the actuator coil, transfer time of the RF contacts, and bounce time of the RF contacts.

TTL Driver Interface: The interface of an electronic circuit which enables driving either relays or switches by TTL logic signals. Products equipped with this option have a pin for the voltage of the actuator (12 V or 28 V) as well as a TTL driver pin shared per position. The polarity is not relevant to applications for switches with this option. The logic used is positive, therefore high level nominal $+5 \mathrm{~V}(2.2$ to 5.5 V$)$ of TTL signal means logic «1» which enables the corresponding microwave way. Low level i.e logic contacts 0 , voltage is $0-0.8 \mathrm{~V}$.
V.S.W.R.: The Voltage Standing Wave Ratio is a measure of the return loss or level of the reflected signal of a device connected on a transmission line. V.S.W.R. is linked to the coefficient of reflection (r) by the equation:

VSWR $=\frac{1+/ r /}{1-/ r /} \quad r=\frac{Z-Z o}{Z+Z o}$
V.S.W.R. varies from 1 to ∞, a value equal to 1 represents a perfect matching
with:
" r " is the coefficient of reflection
"Zo" is the characteristic impedance of the line
" Z " is the impedance of the line

RF Repeatability and Life Test Parameters

Radiall has built an Automatic Test Bench composed by a Vector Network Analyzer (VNA), Digital Multi-Meters (DMM), PC and a switch driver. This approach is to qualify over the complete life of the switch (2.5 million to 10 million cycles depending on switch models). This ATE extracts and stores the RF parameters or contacts resistances of the switch according to our own internal procedure. For each frequency point a calculation of VSWR, insertion loss and standard deviation are computed. All measurements are performed at room temperature (RF switch is toggled at 3Hz) .

The curves in 3D illustrate the RF characteristics over 10 million switching cycles on SP6T-26.5GHz Ramses switch.

Insertion loss over 10 million cycles
Phase over 10 million cycle

The contribution due to only Rc can be calculated as follows:
$R L=20 \log _{10}|\Gamma|=20 \log _{10} \frac{\mathrm{Rc}}{2 \mathrm{Ro}+\mathrm{Rc}}$
$V S W R=1+\frac{R C}{R o}$
$I L=10 \log _{10} \frac{R o}{R o+R c}$

The following curve shows RF contact resistance up to 10 million. Switch was toggled at 3 Hz with Rc recorded each 50 cycles.

Conversions
CONVERSION MEASUREMENT UNIT

- Convert Inch to millimeters: 1 Inch=25.4mm / 1 meter=39.3 Inches
- Convert centimeters to feet: 1 foot $=30.40 \mathrm{~cm} / 1$ meter=3.28 feet
- Convert kilogram to pounds: $1 \mathrm{~kg}=2.20 \mathrm{Lb} / 1$ pound=0.45 kg

REFLECTION COEFFICIENT RETURN LOSS CONVERSION

Reflection coefficient (ρ)
Standard Wave Ratio $(1+\rho) /(1-\rho)$
Return Loss (dB) (-20 $\left.\log _{10} \rho\right)$

Reflection coefficient	V.S.W.R.	$\begin{aligned} & \text { Return } \\ & \text { loss (} \mathrm{dB} \text {) } \end{aligned}$	Reflection coefficient	V.S.W.R.	Return loss (dB)
0	1.00	∞	0.195	1.48	14.2
0.01	1.02	40.0	0.2	1.5	14.0
0.015	1.03	36.5	0.205	1.52	13.8
0.02	1.04	34.0	0.21	1.53	13.6
0.025	1.05	32.0	0.215	1.55	13.4
0.03	1.06	30.5	0.22	1.56	13.2
0.035	1.07	29.1	0.225	1.58	13.0
0.04	1.08	28.0	0.23	1.6	12.8
0.045	1.09	26.9	0.235	1.61	12.6
0.046	1.10	26.7	0.24	1.63	12.4
0.05	1.11	26.0	0.245	1.65	12.2
0.055	1.12	25.2	0.25	1.67	12.0
0.06	1.13	24.4	0.255	1.68	11.9
0.065	1.14	23.7	0.26	1.7	11.7
0.07	1.15	23.1	0.265	1.72	11.5
0.075	1.16	22.5	0.27	1,74	11.4
0.08	1.17	21.9	0.275	1.76	11.2
0.085	1.19	21.4	0.28	1,78	11,1
0.09	1.20	20.9	0.285	1.80	10.9
0.095	1.21	20.4	0.29	1.82	10.8
0.1	1.22	20.0	0.295	1.84	10.6
0.105	1.23	19.6	0.3	1.86	10.5
0.11	1.25	19.2	0.305	1.88	10.3
0.115	1.26	18.8	0.31	1.90	10.2
0.12	1.27	18.4	0.32	1.94	9.9
0.125	1.29	18.1	0.33	1.99	9.6
0.13	1.30	17.7	0.34	2.03	9.4
0.135	1.31	17.4	0.35	2.08	9.1
0.14	1.33	17.1	0.36	2.13	8.9
0.145	1.34	16.8	0.37	2.17	8.6
0.15	1.35	16.5	0.38	2.23	8.4
0,155	1.37	16.2	0.39	2.28	8.2
0.16	1.38	15.9	0.4	2.33	8.0
0.165	1.4	15.7	0.41	2.39	7.7
0.17	1.41	15.4	0.42	2.45	7.5
0.175	1.42	15.1	0.43	2.51	7.3
0.18	1.44	14.9	0.44	2.57	7.1
0.185	1.45	14.7	0.45	2.64	6.9
0.19	1.47	14.4	0.5	3.00	6.0

Conversions

POWER CONVERSION
$\mathrm{dBm}=10 \times \log 10 \mathrm{P}$ (milliwatts)
P (milliwatts) $=10^{\wedge}(\mathrm{dBm} / 10)$

Power (dBm)	Power (W)	Power (dBm)	Power (W)
-49	$0.01 \mu \mathrm{~W}$	1	1.26 mW
-48	$0.02 \mu \mathrm{~W}$	2	1.58 mW
-47	$0.02 \mu \mathrm{~W}$	3	2.00 mW
-46	$0.03 \mu \mathrm{~W}$	4	2.51 mW
-45	$0.03 \mu \mathrm{~W}$	5	3.16 mW
-44	$0.04 \mu \mathrm{~W}$	6	3.98 mW
-43	$0.05 \mu \mathrm{~W}$	7	5.01 mW
-42	$0.06 \mu \mathrm{~W}$	8	6.31 mW
-41	$0.08 \mu \mathrm{~W}$	9	7.94 mW
-40	$0.10 \mu \mathrm{~W}$	10	10 mW
-39	$0.13 \mu \mathrm{~W}$	11	12.59 mW
-38	$0.16 \mu \mathrm{~W}$	12	15.85 mW
-37	$0.20 \mu \mathrm{~W}$	13	19.95 mW
-36	$0.25 \mu \mathrm{~W}$	14	25.12 mW
-35	$0.32 \mu \mathrm{~W}$	15	31.62 mW
-34	$0.40 \mu \mathrm{~W}$	16	39.81 mW
-33	$0.50 \mu \mathrm{~W}$	17	50.12 mW
-32	$0.63 \mu \mathrm{~W}$	18	63.10 mW
-31	$0.79 \mu \mathrm{~W}$	19	79.43 mW
-30	$1 \mu \mathrm{~W}$	20	100 mW
-29	$1.26 \mu \mathrm{~W}$	21	125.89 mW
-28	$1.58 \mu \mathrm{~W}$	22	158.49 mW
-27	$2 \mu \mathrm{~W}$	23	199.53 mW
-26	$2.51 \mu \mathrm{~W}$	24	251.19 mW
-25	$3.16 \mu \mathrm{~W}$	25	316.23 mW
-24	$3.98 \mu \mathrm{~W}$	26	398.11 mW
-23	$5.01 \mu \mathrm{~W}$	27	501.19 mW
-22	$6.31 \mu \mathrm{~W}$	28	630.96 mW
-21	$7.94 \mu \mathrm{~W}$	29	794.33 mW
-20	$10 \mu \mathrm{~W}$	30	1 W
-19	$12.59 \mathrm{\mu W}$	31	1.26 W
-18	$15.85 \mu \mathrm{~W}$	32	1.58 W
-17	$19.95 \mu \mathrm{~W}$	33	2 W
-16	$25.12 \mu \mathrm{~W}$	34	2.51 W
-15	$31.62 \mu \mathrm{~W}$	35	3.16 W
-14	$39.81 \mu \mathrm{~W}$	36	3.98 W
-13	$50.12 \mu \mathrm{~W}$	37	5.01 W
-12	$63.10 \mu \mathrm{~W}$	38	6.31 W
-11	$79.43 \mathrm{\mu W}$	39	7.94 W
-10	$100.00 \mu \mathrm{~W}$	40	10 W
-9	$125.89 \mu \mathrm{~W}$	41	12.59 W
-8	$158.49 \mu \mathrm{~W}$	42	15.85 W
-7	$199.53 \mu \mathrm{~W}$	43	19.95 W
-6	$251.19 \mu \mathrm{w}$	44	25.12 W
-5	$316.23 \mu \mathrm{~W}$	45	31.62 W
-4	$398.11 \mu \mathrm{~W}$	46	39.81 W
-3	$501.19 \mu \mathrm{~W}$	47	50.12 W
-2	$630.96 \mu \mathrm{~W}$	48	63.10 W
-1	$794.33 \mu \mathrm{~W}$	49	79.43 W
0	1 mW	50	100 W

| | Conversions | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :--- |
| | TEMPERATURE EQUIVALENCE | | | | |

Conversions
TEMPERATURE EQUIVALENCE
Temp $\left.\left({ }^{\circ} \mathrm{C}\right)=\left(\left({ }^{\circ} \mathrm{F}-32\right) \times 5\right)\right) / 9$
Temp $\left({ }^{\circ} \mathrm{F}\right)=\left(\left(9 x^{\circ} \mathrm{C}\right) / 5\right)+32$

DERATING TEMPERATURE INFORMATION

The temperature at which the switches are used has an effect on the coil resistance. This is due to the temperature and variation of the resistivity of copper and the pick up voltage.
Formula of the variation of coil resistance versus the temperature is:
$R^{\prime}=R\left(1+K\left(t^{\prime}-t\right)\right)$
$\mathrm{K}=$ Temperature coefficient (0.0038 for copper)
$\mathrm{R}=$ Coil resistance (ohms) at temperature $\mathrm{t}\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{R}^{\prime}=$ Coil resistance (ohms) at temperature $\mathrm{t}^{\prime}\left({ }^{\circ} \mathrm{C}\right)$
Example of calculation:
Device: SPDT Failsafe R570413000
How to calculate current at $70^{\circ} \mathrm{C}$ with this relay?
In reference to specifications outlined in the technical data sheet:
Coil resistance 275 Ohms at $25^{\circ} \mathrm{C}\left(\mathrm{R}=275, \mathrm{t}=25, \mathrm{t}^{\prime}=70\right)$
Nominal current $=102 \mathrm{~mA}$ at $25^{\circ} \mathrm{C}$
Nominal voltage $=28$ volts

New coil resistance at $70^{\circ} \mathrm{C}$ will be:
$R^{\prime}=275(1+0.0038(70-25))$
$\mathrm{R}^{\prime}=275 \times 2.71$
$\mathrm{R}^{\prime}=323$ Ohms

According to the Ohm law ($\mathrm{U}=\mathrm{RI}$), at $70^{\circ} \mathrm{C}$:
$\mathrm{U}=\mathrm{R} \times \mathrm{I}$
$\mathrm{I}=87 \mathrm{~mA}$

Conversions

The following graphs are examples of calculation for the same product R570413000 (SPDT SMA)

Current value versus voltage over temperature range

For customer support and more technical information contact a Radiall sales representative.

Conversions
Coil resistance value versus temperature

Maximum pick up voltage variation versus temperature

User Handbook

USER HANDBOOK FOR CONNECTOR ASSEMBLY ON COAXIAL SWITCHES

When connecting RF coaxial connectors to Radiall switches precaution should be taken to avoid irreversible damage on the RF switches.

Use only connectors with the correct interface dimensions

To ensure appropriate torque on the connector, and avoid damage on the contacts it is recommended to use a specific tool with calibrated torque.Apply the recommended torque as shown below:

SMA Connectors	from 80 to 120 N.cm
TNC Connectors	$265 \mathrm{~N} . \mathrm{cm}$

Connection of semi rigid cable using the center contact of the cables as pin for connecting the female connector If the center contact is not in alignment with the femele socket, the switch RF connector could be damaged.

Fig A: Misaligned pin between insulator and female contacts slots
RF connectors with removable nut allow visual confirmation that the center contact is correctly positioned.

Cable	Connector
.085	R125 052500
.141	R125 055500

Fig B: Semi rigid cable with removable nut SMA contact

Radiall

Contents

Slim Line Series
SMT Power Micro-SPDT with 10 GHz capabilities: R596 Series
2-2 to 2-11

Ramses Series
SPDT up to 50 GHz : R570 Series (miniature models) .. 2-12 to 2-15
SPDT up to 50 GHz : R572 Series (miniature: low consumption \& reduced size models) 2-16 to 2-19
SPDT up to 18 GHz: R570 Series (standard models) ...2-20 to 2-23

Electrical Schematics
R570 \& R572 Series
2-24 to 2-27

Platinum Series
High Performance SPDT up to 40 GHz: R595 Series
2-28 to 2-33

Optional Features
SPDT PART NUMBER SELECTION GUIDE*

Example of P/N: R570F12010 is a SPDT SMA 26.5 GHz , failsafe, 12 Vdc , without TTL, with positive common, solder pins.
*For part number creation and available options, see detailed part number selection for each series.

SMT Power Micro SPDT with 10 GHz Capabilities
SURFACE MOUNT TECHNOLOGY

Patent pending

Actual Size

Typical Outline Drawing (All dimensions in mm)

PART NUMBER SELECTION

An innovative and original "micro-mechanical" design of the R596 SMT micro-relay offers, excellent RF performance, reliability, and repeatability. The miniature size, and low installation cost make these coaxial switches an ideal solution.
Very low return loss and insertion loss allow this relay to be used in power applications, as well as in typical SMT relay applications such as RF attenuators, RF matrices, spectrum analysers, and telecommunications.
Failsafe models are offered in two RF configurations (direct and inverted). The association of these two products on the same PC board enables the product to perform the bypass function. (For bypass mounting, further information is available on page 2-8).

Example of P/N:
R596813100 is a SPDT SMT $8 \mathrm{GHz}, 24 \mathrm{Vdc}$, failsafe, standard packaging.
Frequency Range:
3: $\mathrm{DC}-3 \mathrm{GHz}$
8: $\mathrm{DC}-8 \mathrm{GHz}$

Type:
1: Failsafe
3: Latching, 2 coils
9: Failsafe, inverted RF path (1)

Actuator Voltage:

2: 12 Vdc
3: 24 Vdc
(1): To be associated with a failsafe model, so as to achieve the "BYPASS" function (see application details on page 2-8)
(2): Non standard packaging symbols ($2,5,9$ or T) are not marked on the relay
(3): See details about test fixture dimensions on page 2-4
(4): Tape delivered without reel, available for all specific quantities up to 200 pieces

SMT Power Micro SPDT with 10 GHz Capabilities

SLIM LINE GENERAL SPECIFICATIONS

Operating mode			Failsafe (types 1 and 9)		Latching (type 3)	
Nominal operatin lacross temperat	oltage range)	Vdc	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 24 \\ (20.5 \text { to } 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 24 \\ (20.5 \text { to } 30) \end{gathered}$
Coil resistance at	${ }^{\circ} \mathrm{C}(+/-10 \%)$	Ω	330	1130	205	865
Operating current	$23{ }^{\circ} \mathrm{C}$	mA	36	25	58	32
RF and command ports			1/2 hole gold plated, Infrared reflow, forced air oven or hand soldering (Compatible with lead free soldering processes)			
Switching time at Making co nominal voltage Breaking			Max 4ms (typical 1.8ms), including contact bounce time Max 1 ms (typical 0.5 ms)			
Life - Cold switching (max 120 cycles/min) - Hot switching (max 20 cycles/min)			2 million cycles 500.000 cycles (1W, impedance 50@, V.S.W.R. < 1.25)			
Insulation			Dielectric test voltage		300 Vrms	
			Insulation resistance at 500 Vdc		> 100 MOhms	
Environmental protection			Lead free construction - Waterproof (acc. To IEC 60529 / IP67)			
Mass			$<2 \mathrm{~g}$			
Operating temperature range (with no icing nor condensation)		${ }^{\circ} \mathrm{C}$	-25 to +85 (5)		-40 to +85	
Storage temperature range ${ }^{\circ} \mathrm{C}$			- 55 to +85			
Sine vibration (MIL STD 202, Method 204D)			- Condition D: 10-2000 Hz, 20g		operating	
			- Condition G: $10-2000 \mathrm{~Hz}, 30 \mathrm{~g}$		non operating	
Random vibration (MIL STD 202, Method 214A, Profile I)			- Condition F: 50-2000 Hz, 20.71g		operating	
			- Condition H: $50-2000 \mathrm{~Hz}, 29.28 \mathrm{~g}$		non operating	
Shocks (According to MIL STD 202, Method 213B, Cond. C)			$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine		operating	

(5): Failsafe models may be used down to $-40^{\circ} \mathrm{C}$, but if coil remains permanently supplied at nominal voltage, the holding current value must be reduced from 45% to 55% to avoid internal condensation. (for more details, see Radiall application note AN-R596-51 on page 2-10).

PIN IDENTIFICATION (TOP VIEW)

Failsafe model
(Type 1)

Voltage	RF continuity
De-energized	$C<-->1(N C)$
Energized	$C<-->2(N O)$

Inverted failsafe model for Bypass application (Type 9)

Voltage	RF continuity
De-energized	$\mathrm{C}<-->1(\mathrm{NC})$
Energized	$\mathrm{C}<-->2(\mathrm{NO})$

Latching model (Type 3)

Voltage	RF continuity
$-1+1$	$\mathrm{C}<-->1$
$-2+2$	$\mathrm{C}<-->2$

SMT Power Micro SPDT with 10 GHz Capabilities
SLIM LINE PERFORMANCE (S PARAMETERS AVAILABLE ON REQUEST)

Frequency range GHz		V.S.W.R. (max)	$\begin{aligned} & \text { Insertion } \\ & \quad \text { loss } \\ & (\max) \mathrm{dB} \end{aligned}$	Isolation (min) dB		Average power W (see page 2-5)		Third order Inter modulation	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$	
		switch alone		switch + board layout (6)	cold switching	hot switching				
$\begin{aligned} & D C-3 \\ & D C-8 \end{aligned}$	DC-1		1.10	0.10	50	50	400	50	$\begin{gathered} -120 \mathrm{dBc} \\ \text { typical } \\ \text { (2 carriers } \\ 20 \mathrm{~W} \text {) } \end{gathered}$	50
	1-2	1.20	0.20	45	40	280	50			
	2-3	1.35	0.30	40	30	175	40			
	3-6	1.35	0.40	35	30	50	25			
	6-8	1.40	0.80	30	30	35	5			

(6): taking account of the reduction of isolation due to coupling between PCB microstrip lines (see isolation dotted curve above and measurement method below)

TYPICAL RF PERFORMANCES

Insertion Loss and Isolation

V.S.W.R

MEASUREMENT METHOD

Relay soldered on text fixture (7)

Calibration board

Inputs/Outputs of the calibration board and test fixture are equipped with SMA type receptacle connectors (Radiall part number R125 510 000). The length of the RF tracks is the same on the calibration board and the test fixture circuits. The insertion loss of the relay itself is calculated by subtracting the insertion loss of the "calibration board" to the insertion loss of the "relay welded on the test fixture".
(7): Relay soldered on Test Fixture is available. To order, please use the suffix "T" (part number R596---- T), as explained in page 2-2.

SMT Power Micro SPDT with 10 GHz Capabilities

RF POWER RATING FOR COLD SWITCHING USE

(Impedance 50 Ohms, V.S.W.R. < 1.25)
Power level depends on environmental conditions:

- R596 series have been designed to be used without a cooling fan even for high power applications. However, the power capability may be still improved by using the appropriate cooling fan.
- For failsafe models used with coil permanently supplied (N/O position), the same power level as latching models may be applied: see on application note N° AN-R596-51 on page 2-10, how to implement a "low holding current" function on your PC board, to avoid internal overheating and increase the RF power level.

LIFE DERATING CURVE FOR HOT SWITCHING USE

(Impedance 50 Ohms, V.S.W.R. < 1.25) General Specifications

Impedance 50Ω
V.S.W.R. < 1.25
max switching frequency:
30 cycles per mn

SMT Power Micro SPDT with 10 GHz Capabilities

RELAY PACKAGING

According to IEC 286-3 standard

Materials:

Reel: polyester
Carrier tape: antistatic PETG (polyester) Cover tape: polyester

Video shadow of the relay

Aspiration Aera

SMT Power Micro SPDT with 10 GHz Capabilities

PC BOARD MOUNTING

Board layout
DXF or Gerber format file available upon request (8)

Subtrate types
Recommended substrates are ROGERS RO4003 or ARLON 25N

- Mounting face: Thickness 0.813 mm Cu double side $17.5 \mu \mathrm{~m}$. Width of track 1.83 mm

Others substrates: R04350, thickness 0.813 mm Cu double side $17.5 \mu \mathrm{~m}$. Width of track 1.80 mm 25FR, thickness 0.813 mm Cu double side $17.5 \mu \mathrm{~m}$. Width of track 1.76 mm

- Opposite face: Plating all over the face

Total thickness of the tracks (copper over thickness + plating): $40 \mu \mathrm{~m}$
Other substrates may be used (for instance standard FR4), if provided with adequate modification of the tracks width.
Soldering Pattern
Varnish Pattern

Please contact your local sales representative for additional information

SMT Power Micro SPDT with 10 GHz Capabilities

BYPASS APPLICATION

Failsafe Micro-relay typical implantation

SPDT relays (Single Pole Double Throw) can be used to achieve a bypass switch function. For SMT applications, R596 series, relays are available in two failsafe versions, standard and inverted, to provide symmetric RF ports implantation possibility. The "side by side" implementation of these two versions on a PCB effectively produces the bypass function. The package size is reduced and interconnecting tracks are shortened. Required in order to protect the receiver for transmit/receive applications. Depending on the distance between the two relays, this configuration can achieve high isolation levels, up to 80 dB @ 1GHz, 70 dB @ 2 GHz , and 60 dB @ 6GHz.

BYPASS TYPICAL IMPLANTATION \& PIN IDENTIFICATION

(Top View)

BYPASS PC BOARD MOUNTING

Example of Board layout for bypass application

(See detailed board layout on page 2-7)

SMT Power Micro SPDT with 10 GHz Capabilities RECOMMENDED SOLDERING PROCEDURE

A-Soldering procedure using automatic
pick and place equipment

1-Solder paste

R596 series are Lead free. Lead free Sn-Ag3.5-Cu0.7 solder cream may be used as well as standard Sn63-Pb35- Ag2. Radiall recommends using a no clean - low residue solder cream (5% solid residue of flux quantity) that will permit the elimination of the cleaning operation step after soldering.
Note: Due to the gold plating of the switch PCB interface, it is important to use a paste made with silver. This will help in avoiding formation of intermetallics as part of the solder joint.

2-Solder paste deposition

Solder cream may be applied on the board with screen printing or dispenser technologies. For either method, the solder paste must be coated to appropriate thickness and shapes to achieve good solder wetting. Please verify that the edges of the zone are clean and without contamination and that the PCB zoned areas have not oxidized. The design of the mounting pads and the stenciling area are given on page 2-7, for a thickness of the silk-screen printing of $0.15 \mathrm{~mm}\left(0.006{ }^{\prime \prime}\right)$.

3-Placement of the component

For small lightweight components such as chip components, a self-alignment effect can be expected if small placement errors exist. However, this effect is not as expected for relays components and they require an accurate positioning on their soldering pads, typically $+/-0.1 \mathrm{~mm}\left(+/-0.004^{\prime \prime}\right)$. Place the relay onto the PCB with automatic pick and place equipment. Various types of suction can be used. Radiall does not recommend using adhesive agents on the component or on the PCB.

4-Soldering: infra-red process

Please refer to the recommended temperature profile for infra-red reflow or forced air convection:

Higher temperature $\left(>260^{\circ} \mathrm{C}\right)$ and longer process duration would permanently damage the switches.

5-Cleaning procedure

On miniature relays, high frequency cleaning may cause the contacts to stick. If cleaning is needed, please avoid ultrasonic cleaning and use alcohol based cleaning solutions.

In-line cleaning process, spraying, immersion, especially under temperature, may cause a risk of degradation of internal contacts.

6-Quality check

Verify by visual inspection that the component is centered on the mounting pads. For solder joints, verify by visual inspection that the formation of meniscus on the pads are proper, and have a capillarity amount at least a third of the height.
B- Soldering procedure by manual operation
1-Solder paste and flux deposition
Refer to procedure A-1
Deposit a thin layer of flux on mounting zone, and allow the flux to evaporate a few seconds before applying the solder paste, in order to avoid dilution of the paste.

2-Solder paste deposition

Radiall recommends depositing a small amount of solder paste on the mounting zone area by syringe. Be careful, not to apply solder paste outside of the zone area.

3-Placement of the component:

During manipulation, avoid contaminating the lead surfaces by contact with fingers. Place the component on the mounting zone by pressing on the top of the relay lid.

4-Hand soldering

Iron wattage 30 to 60 W . Tip temperature 280 to $300^{\circ} \mathrm{C}$ for maximum 5 seconds to keep good RF characteristics above 3GHz. It is important to solder RF ports first, and apply pressure on the relay lid during all the soldering stage, to reduce the air gap between the PC board and the relay.

5-Cleaning procedure

Refer to procedure A - 5

6-Quality check

Verify by visual inspection that component is centred on the mounting pads. For solder joints, verify by visual inspection that the formation of meniscus on the pads are proper, and have a capillarity amount at least a third of the height.

APPLICATION NOTE AN-R596-051

Subject: How to use failsafe R596 micro-relays over all the guaranteed temperature range, in or condensation environmental conditions.

RF and electrical characteristics are guaranteed on all failsafe R596 switches over their operating temperature range $\left(-25^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$, and under "no icing nor condensation" conditions.
In extreme applications, with failsafe models used at low temperature, continuously in the N/O position (coil permanently supplied), N/C contact failures may occur, due to the high gradient of temperature between the coil (heated by the permanent power 500 mW) and the RF paths. N/O contact resistance remains satisfactory, but condensation deposits ice on the open contact N / C, and when power is cut, the N / C position is not correctly established.
Failsafe models can be continuously driven when energized from $-40^{\circ} \mathrm{C}$, if the coil is not permanently supplied at nominal voltage, and heating and internal condensation is avoided. Once the relay has switched, the operating voltage must be reduced by $50 \%+/-5 \%$. This low holding voltage is possible on R596 series, as it is enough to maintain the switch in "energized" position (for instance 5.4 V to 6.6 V for a 12 V model). Furthermore it allows the user to save energy, by combining the advantages of latching and failsafe models.
This "holding current" function can be achieved by the implementation of a simple electronic drive on the command PC Board (1 resistor, 1 diode and 1 capacitor), for 12 V and 24 V models. A typical circuit design is shown on the schematic below. A few milliseconds after switching, the current is divided by two, and the absorbed power is divided by four (i.e. 6 V and 110 mW for a 12 V model).

To reduce the voltage by 50\%, the value of resistance R must be equal to the total resistance of the switch coil:

- 12V models: 330 Ohms 1/4W
- 24V models: 1200 Ohms 1/4W

POWER SUPPLY

R596 FAILSAFE RELAY

Applications

EXAMPLE OF SMT APPLICATIONS

The SMT Series offers a large range of products which can be used in many applications such as:

- Tower mount amplifiers
- Instrumentation
- Military radios
- ECM equipment
- BTS
- Radio-Links
- Repeaters

These products offer the same RF Board and soldering process as all RF components but with a reduced weight and size. They are designed to meet all market specifications.
 performance and operating frequencies from DC to 50 GHz . Radiall's RAMSES concept (which provides for a life span of 10 million cycles) offers a variety of options to meet customer needs.

These switches are dedicated to all market applications including: military, instrumentation and telecommunications.
Example of P / N :
R570413100 is a SPDT SMA 18 GHz , failsafe, 28 Vdc , with TTL driver, without option, solder pins.

PART NUMBER SELECTION

I.C.: Indicator contact - S.C.O.: Self Cut-Off
(1): Suppression diodes are already included in Self Cut-OFF \& TTL option
(2): Polarity is not relevant to application for switches with TTL driver
(3): Positive common shall be specified only with type $3,4,5 \& 6$ because failsafe switches can be used with both polarities
(6): Available only upon request
(4): The QLF tradermark (Quick Lock Formula®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certified connectors also guarantees the specified level of RF performances
(5): Connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu

SPDT up to 50 GHz

Pc Board - SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6
GENERAL SPECIFICATIONS

Operating mode			Failsafe		Latching	
Nominal operating voltage (across temperature range)		Vdc	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$
Coil resistance at $23{ }^{\circ} \mathrm{C}(+/-10 \%)$		Ω	47.5	275	58	350
Operating current at $23{ }^{\circ} \mathrm{C}$		mA	250	102	210	80
Average power			See Power Rating Chart page 1-13			
TTL Input		High level	2.2 to 5.5 Volts		$800 \mu \mathrm{~A}$ max 5.5 Volts	
		Low level	0 to 0.8 Volts		$20 \mu \mathrm{~A}$ max 0.8 Volts	
Indicator rating			$1 \mathrm{~W} / 30 \mathrm{~V} / 100 \mathrm{~mA}$			
Switching time		ms	10			
Life	SMA - SMA 2.9 - QMA		10 million cycles			
	DIN 1.6/5.6-Pc Board		5 million cycles			
	Mini SMB - SMB - SMC		2.5 million cycles			
	2.4 mm		2 million cycles			
Connectors			SMA - SMA 2.9 - QMA - DIN 1.6/5.6 - SMB - SMC Mini SMB - Pc Board - 2.4mm			
Operating temperature range	DIN 1.6/5.6 - SMB - SMC - mini SMB - 2.4 mm		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
	$\begin{aligned} & \text { SMA - SMA } 2.9 \text { - QMA - } \\ & \text { Pc Board } \end{aligned}$		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage temperature range	DIN 1.6/5.6 - SMB - SMC - mini SMB -2.4 mm		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
	$\begin{aligned} & \text { SMA - SMA 2.9- QMA - } \\ & \text { Pc Board } \end{aligned}$		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, Method 204D, cond.D)			$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$		Operating	
Shock (MIL STD 202, Method 213B, cond.C)			$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine		Operating	

RF PERFORMANCES

See page 2-14, 2-18 and 2-19 for typical RF performances

SPDT up to 50 GHz

Pc Board - SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6

R570 AND R572 TYPICAL RF PERFORMANCE

Example: SPDT SMA 2.9 up to 40 GHz

Example: SPDT 2.4 mm up to 50 GHz
Insertion Loss and Isolation

Example: SPDT mini SMB up to 3 GHz
Insertion Loss and Isolation

Note: see page 2-18 for other connectors
V.S.W.R.

V.S.W.R.

V.S.W.R.

SPDT up to 50 GHz
Pc Board - SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6

TYPICAL OUTLINE DRAWING

Connectors	A max (mm)
SMA	7.4
SMA 2.9 \& 2.4mm	6.3
SMB - SMC	9.3
QMA	10.8
Mini SMB	7.5
DIN 1.6/5.6	11.5
Pc Board	4.5

See page 2-27 for pin identification.

ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For SPDT model R570 series => Radiall part number: R599 910000

Radiall's RAMSES R572 series are ideal for RF \& microwave systems where low current consumption, reduced size, high performance and high reliability are required. Other options are also available as shown on this page.

These switches are perfect for all market applications including: industrial, instrumentation, defense and telecommunications.

Example of P/N:
R572432010 is a SPDT SMA 18 GHz , latching, 12 Vdc , positive common, solder pins.

PART NUMBER SELECTION

(1): Positive common shall be specified only with type 3 because failsafe switches can be used with both polarities
(2): Available only upon request

(3): The QLF tradermark (Quick Lock Formula®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certified connectors also guarantees the specified level of RF performances
(4): Connector SMA2.9 is equivalent to "K connector®", registered trademark of Anritsu

SPDT up to 50 GHz: Low Consumption \& Reduced Size
SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6

GENERAL SPECIFICATIONS

RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R. (max)	```Insertion loss (max) dB```	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	Impedance Ω
DIN 1.6/5.6	DC-2.5	DC-1	1.20	0.20	80	75
		1-2.5	1.30	0.30	70	
Mini SMB	DC-3	DC-1	1.20	0.20	80	
		1-3	1.30	0.30	70	
SMB - SMC	DC-3	DC - 3	1.20	0.20	80	50
QMA	DC-6	DC - 3	1.20	0.20	80	
		3-6	1.30	0.30	70	
SMA	$\begin{gathered} D C-3 \\ D C-18 \\ D C-26.5 \end{gathered}$	DC-3	1.10	0.15	80	
		3-8	1.20	0.20	75	
		8-12.4	1.20	0.25	65	
		12.4-18	1.40	0.35	60	
		18-26.5	1.50	0.50	55	
SMA 2.9	DC - 40	DC-6	1.30	0.30	70	
		6-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	1.90	0.80	50	
2.4 mm	DC-50	DC-6	1.30	0.30	70	
		6-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	1.90	0.80	50	
		40-50	1.90	1.10	50	

SPDT up to 50 GHz : Low Consumption \& Reduced Size
SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6

R570 AND R572 TYPICAL RF PERFORMANCES

Example: SPDT SMA up to 26.5 GHz
Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.

SPDT up to 50 GHz : Low Consumption \& Reduced Size
SMA - SMA 2.9-2.4mm - QMA - SMC - SMB - mini SMB - DIN 1.6/5.6

R570 AND R572 TYPICAL RF PERFORMANCES

	Connectors
SMA	7.4
SMA 2.9 \& 2.4 mm)	
SMB - SMC	6.3
QMA	9.3
Mini SMB	10.8
DIN 1.6/5.6	7.5
	11.5

Radiall's RAMSES SPDT N, BNC \& TNC switches are designed for high performance in RF \& Microwave systems up to 18 GHz .
Radiall's RAMSES concept (modular concept) offers a full range of configurations. They are commonly used for applications where high power handling capability is required.

These switches are dedicated to all market applications including: defense, instrumentation and telecommunications.
Example of P / N :
R570113035 is a SPDT N 12.4 GHz, failsafe, 28 Vdc , with supression diodes, without option, D-Sub connector.

PART NUMBER SELECTION

SPDT up to 18 GHz

N - TNC - BNC
GENERAL SPECIFICATION

Operating mode			Failsafe		Latching		
Nominal operating voltage (across temperature range)		Vdc	12	28	12	28	
		(10.2 to 13)	(24 to 30)	(10.2 to 13)	(24 to 30)		
Coil resistance at $23^{\circ} \mathrm{C}(+/-10 \%)$			Ω	38	200	38	225
Operating current at $23^{\circ} \mathrm{C}$		mA	320	140	320	125	
Average power			See Power Rating Chart page 1-13				
TTL input	High level		2.2 to 5.5 Volts		$800 \mu \mathrm{~A}$ max 5.5 Volts		
	Low level		0 to 0.8 Volts		$20 \mu \mathrm{~A}$ max 0.8 Volts		
Switching time ms			10				
Life			2.5 million cycles				
Connectors			N - TNC - BNC				
Actuator terminals			Solders pins or 9 pin D-Sub connector				
Operating temperature range			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Storage temperature range			$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
Vibration (MIL STD 202, Method 204D, cond.D)			$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$		Operating		
Shock (MIL STD 202, Method 213B, cond.C)			$100 \mathrm{~g}, 6 \mathrm{~ms}, 1 / 2$ sine		Non operating		

RF PERFORMANCES

Connectors	Frequency Range GHz		V.S.W.R. (max)	```Insertion Loss (max) dB```	$\underset{d B}{\text { Isolation (min) }}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$
N/TNC	$\begin{gathered} D C-3 \\ D C-12.4 \end{gathered}$	DC-1	1.15	0.15	85	50
		1-2	1.20	0.20	80	
		2-3	1.25	0.25	75	
		3-8	1.35	0.35	70	
		8-12.4	1.50	0.50	60	
TNC 18GHz	DC - 18	DC-6	1.30	0.30	70	
		6-12.4	1.50	0.50	60	
		12.4-18	1.60	0.70	60	
BNC	DC-3	DC-1	1.15	0.15	85	
		1-2	1.20	0.20	80	
		2-3	1.25	0.25	75	

SPDT up to 18 GHz

N - TNC - BNC

R570 TYPICAL RF PERFORMANCES

Example: SPDT N and TNC up to 12.4 GHz
Insertion Loss and Isolation

Example: SPDT TNC up to 18 GHz
Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.

SPDT up to 18 GHz
N - TNC - BNC

TYPICAL OUTLINE DRAWING

Example: SPDT N and TNC up to 12.4 GHz

See page 2-27 for pin allocation

See page 2-27 for D-Sub pin allocation

Connectors	N	TNC	BNC
A max (mm)	18.8	11	11

ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For SPDT model R570 series => Radiall part number: R599 910000

FAILSAFE

WITHOUT OPTION R570-1-000 / R572-1-000 Position Energized:	WITH INDICATOR CONTACT R570-2-000
WITH SUPPRESSION DIODES R570-1-030 Position Energized:	WITH SUPPRESSION DIODES AND INDICATOR CONTACT R570-2-030
WITH TTL DRIVER (supression diodes are included) R570-1-100 Position Energized:	WITH TTL DRIVER AND INDICATOR CONTACT (supression diodes are included) R570-2-100

LATCHING

WITHOUT OPTION R570-3- 000 AND R572-3- 000	WITH INDICATOR CONTACT R570-4-000
WITH SUPPRESSION DIODES R570-3-030	WITH SUPPRESSION DIODES AND INDICATOR CONTACT R570-4-030
WITH TTL DRIVER (supression diodes are included) R570-3-100	WITH TTL DRIVER AND INDICATOR CONTACT (supression diodes are included) R570-4-100

LATCHING

WITH CUT-OFF (supression diodes are included) R570-5-000	WITH CUT-OFF AND INDICATOR CONTACT (supression diodes are included) R570-6-000
WITH CUT-OFF AND TTL DRIVER (supression diodes are included) R570-5-100	WITH CUT-OFF, TTL AND INDICATOR CONTACT (supression diodes are included) R570-6-100
WITH POSTIVE COMMMON, NO OPTION R570-3- 010 / R572-3- 010	WITH POSTIVE COMMMON AND INDICATOR CONTACT R570-4-010

LATCHING

WITH POSITIVE COMMON AND SUPPRESSION DIODES
R570 $-3-040$

PIN IDENTIFICATION

Type	PIN						
	1	2	3	4	6	7	8
Failsafe	+		-				
Failsafe + I.C.	+		-		2NO	1NC	C
Failsafe + TTL	E		RTN	VCC			
Failsafe + I.C. + TTL	E		RTN	VCC	2NO	1NC	C
Latching Latching + Cut-off	$\begin{aligned} & -2 \\ & \text { or } \\ & +2 \end{aligned}$	$\begin{aligned} & -1 \\ & \text { or } \\ & +1 \end{aligned}$	$+C$ or -C				
```Latching + I.C. Latching + I.C. + Cut-off```	$\begin{aligned} & -2 \\ & \text { or } \\ & +2 \end{aligned}$	$\begin{aligned} & -1 \\ & \text { or } \\ & +1 \end{aligned}$	+ C or -C		2	1	C
$\begin{gathered} \text { Latching + TTL } \\ \text { Latching + TTL + Cut-off } \end{gathered}$	E2	E1	RTN	VCC			
Latching + TTL + I.C.   Latching + TTL + I.C. + Cut-off	E2	E1	RTN	VCC	2	1	C



## PART NUMBER SELECTION

High performance SPDT up to 40 GHz

## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL STD 202F, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(10 \mathrm{cyc} / \mathrm{s})$
Sine vibration operating (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$
Random vibration operating	$16.91 \mathrm{~g} \mathrm{(rms)} 50-2000 \mathrm{~Hz} 3 \mathrm{~min} / \mathrm{axis}$
Shock operating (MIL STD 202, Method 213B, Cond.G)	$50 \mathrm{~g} / 11 \mathrm{~ms}$, sawtooth
Humidity operating	15 to $95 \%$ relative humidity
Humidity storage (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days
Altitude operating	15.000 feet (4.600 meters)
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50.000 feet (15.240 meters)

High performance SPDT up to 40 GHz
SMA - SMA 2.9
RF PERFORMANCES

Part Number		R5953--1--	R5954--1--		R595F--1--		R595F--1--	
Frequency range	GHz	DC to 6	DC to 20		DC to 26.5		DC to 40	
Impedance	$\Omega$	50						
Insertion Loss (Max)	dB	$0.20+(0.45 / 26.5) \times$ frequency ( GHz )						
Isolation (Min)	dB	85	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ 6 \text { to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 85 \\ & 75 \\ & 65 \end{aligned}$	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ \text { 6 to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 20 \mathrm{GHz} \\ 20 \text { to } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 85 \\ & 75 \\ & 65 \\ & 60 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz   26.5 to 40 GHz	$\begin{aligned} & 85 \\ & 75 \\ & 65 \\ & 60 \\ & 55 \end{aligned}$
V.S.W.R (Max)		1.15	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ 6 \text { to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 18 \mathrm{GHz} \\ 18 \text { to } 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ \text { 6 to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 20 \mathrm{GHz} \\ 18 \text { to } 26.5 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz   26.5 to 40 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \\ & 1.80 \end{aligned}$
Repeatability   (upto 10 million cycles mesuredat $25^{\circ} \mathrm{C}$ )	dB	0.03 dB maximun					0.05 dB maximun	

## TYPICAL RF PERFORMANCES



SMA
V.S.W.R.


SMA 2.9 -

High performance SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: NON TERMINATED SPDT SWITCH

The non terminated SPDT switch is a single pole double throw switch. This switch is considered "break before make".
RF SCHEMATIC DIAGRAM


POSITION INDICATOR
State 11


## Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)


D-Sub connector


Solder pins


State 22


## TTL drive option " 2 "

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path (Ex: apply TTL "High" to pin E2)


D-Sub connector


Solder pins

High performance SPDT up to 40 GHz
SMA - SMA 2.9

## TYPICAL OUTLINE DRAWING

With D-Sub connector


All dimensions are in inches/millimeters

Connectors	A max (mm)
SMA	7.4
SMA 2.9	6.3

With solder pins


High performance SPDT up to 40 GHz
SMA - SMA 2.9

## RF POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching



## DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1


Optional Features for SPDT

## GENERAL



All miniature SPDT switches fitted with SMA, QMA, SMC, SMB or SMA2.9 connectors can be delivered with 34 mm narrow width RF body. Contact Radiall sales directly for availability.

Examples of dedicated application options:


SMA SPDT with a SINGLE input TTL driver. This option is available in a latching configuration upon special request. Key advantages include less wires and easier connection.


A SP4T design up to 8 GHz with SMT relays mounted on a PCB fitted with UMP (Ultra Miniature Pressure) contact. Various switching configurations can be designed according to your specific requests.


SPDT with HN coaxial connectors and MILC38999 circular connector for L band airbone applications.


A SMA SPDT with a specific RF body (with mounting leg) for easy mounting on front panel of switching matrix.


SPDT models available for high power military applications (up to 100 watts CW from DC to 18 GHz ).


DP3T and SPDT Terminated

## Contents

RAMSES series
DP3T and Terminated SPDT up to 40 GHz : R585 Series

## Electrical Schematics

R585 Series

PLATINUM Series
High performance DP3T \& Terminated SPDT up to 40 GHz: R595 Series 3-12 to 3-21
$\qquad$
DP3T PART NUMBER SELECTION GUIDE*


Note: TTL driver is already included for the 1, 3,5 and 7 switch models of the RAMSES R585 series. Example of P/N: R585832000 is a DP3T SMA2.9 40 GHz , latching, 12 Vdc, without option, solder pins.
*For part number creation and available options, see detailed part number selection for each series.

DP3T and Terminated SPDT up to 40 GHz
SMA - SMA 2.9


Radiall's RAMSES DP3T and Terminated SPDT switches offer excellent reliability, high performance and operating frequencies from DC to 40 GHz . A full range of options are available within the RAMSES range in order to offer customers a complete solution.
These relays are dedicated to market applications including: defense, instrumentation and telecommunication.
Example of P/N:
R585423300 is a SPDT terminated SMA 18GHz, failsafe, 28Vdc, indicator contacts, internal terminations without TTL drivers and solder pins.

## PART NUMBER SELECTION

## R 585

RF Connectors:
3: SMA up to 3 GHz
4: SMA up to 18 GHz
F: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}(4)$ (5)

Type:
1: Failsafe
2: Failsafe + I.C.
3: Latching
4: Latching + I.C.
5: Latching + S.C.O. (1)
6: Latching + S.C. $0+$ I.C. (1)

7: Normally open
8: Normally open + I.C.
Actuator Voltage: $\downarrow \square$
2: 12 Vdc
3: 28 Vdc
I.C.: Indicator contact/S.C.O.: Self Cut-Off
(1): Suppression diodes are already included in Self Cut-OFF \& TTL option
(2): Polarity is not relevant to application for switches with TTL driver
(3): Positive common shall be specified only with type $3,4,5,6,7 \& 8$ because failsafe switches can be used with both polarities
(4): Not available with switch model "2" \& "3"
(5): Connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu

Actuator Terminals:
0 : Solder pins

## Options:

0: Without option
1: Positive common (2) (3)
3: With suppression diodes (1)
4: With suppression diodes and positive common (1) (2) (3)

## Switch Model:

0: DP3T without TTL Driver (DP3T)
1: DP3T with TTL Driver (DP3T) (high level) (1) (2)
2: SPDT terminated without TTL Driver /
(internal termination)
3: SPDT terminated with TTL Driver (high level) (1) (2) / (internal termination)
4: SPDT terminated without TTL Driver /
(external termination)
5: SPDT terminated with TTL Driver / (high level)
(1) (2) / (external termination)

6: Terminated 4 ports bypass no option
(external terminations)
7: Terminated 4 ports bypass with TTL Driver (external termination)

## DP3T and Terminated SPDT up to 40 GHz

SMA - SMA 2.9

## GENERAL SPECIFICATIONS

Operating mode		Failsafe		Latching		Normally open	
Nominal operating voltage (across operating temperature)	Vdc	12	28	12	28	12	28
		(10.2 to 13)	(24 to 30)	(10.2 to 13)	(24 to 32)	(10.2 to 13)	(24 to 32)
Coil resistance ( + - $10 \%$ )	$\Omega$	24	138	29	175	47.5	275
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	500	205	420	160	250	102
Average power		See Power Rating Chart page 1-13					
		Internal terminations: 1 Watt CW into 50 Ohms					
TTL input		2.2 to 5.5 Volts $\quad 800 \mu \mathrm{~A}$ max 5.5 Volts					
		0 to 0.8 Volts $\quad 20 \mu \mathrm{~A}$ max 5.5 Volts					
Switching time (Max)		10					
Life (Min)		2 million cycles for products with internal terminations 10 million cycles for all other products					
Connectors		SMA - SMA 2.9					
Actuator terminals		Solder pins					
Operating temperature range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Vibration (MIL STD 202, Method 204D, cond.D)		$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$			Operating		
Shock (MIL STD 202, Method 213B, cond.C)		$100 \mathrm{~g} / 11 \mathrm{~ms}, 1 / 2$ sine			Operating		

## RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R.   (max)	$\begin{aligned} & \text { Insertion loss (max) } \\ & \mathrm{dB} \end{aligned}$	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$
SMA	$\begin{gathered} D C-3 \\ D C-18 \\ D C-26.5 \end{gathered}$	DC-3	1.20	0.20	80	50
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
SMA 2.9	DC-40	DC-6	1.30	0.30	70	50
		6-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	1.90	0.80	50	

DP3T and Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## R585 TYPICAL RF PERFORMANCES

Example: DP3T SMA up to 26.5 GHz


Example: DP3T SMA2.9 up to 40 GHz
Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.


## ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For DP3T model R585 series => Radiall part number: R599910000


DP3T and Terminated SPDT up to 40 GHz
SMA - SMA 2.9
TYPICAL OUTLINE DRAWING


SPDT with external terminations
R585--- 4--
R585 --- 5--


DP3T
R585 --- 0--
R585 --- 1--
See page 3-11 for pin indentification

Connectors	A max (mm)	B max (mm)   if applicable
SMA up to 18 GHz	7.4	13.5
SMA up to 26.5 GHz	7.4	21
SMA 2.9 up to 40 GHz	6.3	21



SPDT with internal terminations
R585 --- 2--
R585 --- 3--


Terminated 4 ports BYPASS relay R585--- 6--
R585 --- 7--

## Coaxial DP3T \& Terminated SPDT - Electrical Schematics

R585 Series

## FAILSAFE



Coaxial DP3T \& Terminated SPDT - Electrical Schematics
R585 Series

## NORMALLY OPEN

WITHOUT OPTION $\text { R585-7- } 000 \text { / R585-7- } 200 \text { / R585-7- } 400$	WITH INDICATOR CONTACT R585-8-000 / R585-8-200 / R585-8-400
RF input	
WITH SUPPRESSION DIODES R585-7- 030 / R585-7- 230 / R585-7- 430   RF input	WITH SUPPRESSION DIODES AND INDICATOR CONTACT R585-8-030 / R585-8-230 / R585-8-430
WITH TTL DRIVER   (supression diodes are included)   R585-7- 000 / R585-7-300 / R585-7-500   AF input	WITH TTL DRIVER AND INDICATOR CONTACT (supression diodes are included) R585-8-100 / R585-8-300 / R585-8-500

Coaxial DP3T \& Terminated SPDT - Electrical Schematics
R585 Series

## NORMALLY OPEN

WITH POSITIVE COMMON, NO OPTION R585-7- 010 / R585-7-210 / R585-7-410   RF input	WITH POSITIVE COMMON AND INDICATOR CONTACT R585-8-010 / R585-8-210 / R585-8-410
WITH POSITIVE COMMON AND SUPPRESSION DIODES R585-7-040 / R585-7-240 / R585-7-440   RF input	WITH POSITIVE COMMON, INDICATOR CONTACT AND SUPPRESSION DIODES $\text { R585-8- } 040 \text { / R585-8- } 240 \text { / R585-8- } 440$
WITHOUT OPTION R585-3-000 / R585-3-200 / R585-3-400   RF input	WITH INDICATOR CONTACT R585-4-000 / R585-4-200 / R585-4-400

## Coaxial DP3T \& Terminated SPDT - Electrical Schematics

R585 Series

## LATCHING

WITH SUPPRESSION DIODES R585-3-030 / R585-3-230 / R585-3-430	WITH SUPPRESSION DIODES AND INDICATOR CONTACT R585-4- 030 / R585-4- 230 / R585-4- 430
RF input	
WITH TTL DRIVER   (suppression diodes are included)   R585-3-100 / R585-3-300 / R585-3-500   RF input	WITH TTL DRIVER AND INDICATOR CONTACT (suppression diodes are included) R585-4-100 / R585-4-300 / R585-4-500
WITH CUT-OFF   (supression diodes are included)   R585-5-000 / R585-5-200 / R585-5-400   RF input	WITH CUT-OFF AND INDICATOR CONTACT (supression diodes are included) R585-6-000 / R585-6-200 / R585-6-400

Coaxial DP3T \& Terminated SPDT - Electrical Schematics
R585 Series

## LATCHING



## Coaxial DP3T \& Terminated SPDT - Electrical Schematics

R585 Series

## LATCHING



## PIN IDENTIFICATION



Radiall's PLATINUM series switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM series switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N:
R595F63215 is a Terminated SPDT SMA 26.5 GHz , latching with Self Cut-Off, 24Vdc, Indicators, D-Sub connector.

## PART NUMBER SELECTION



High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

GENERAL SPECIFICATIONS

Operating mode		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 \text { to } 32) \end{gathered}$	$\begin{gathered} 15 \\ (12 \text { to } 20) \end{gathered}$
Coil resistance (+/-10\%)	$\Omega$	175	60
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	140	250
Average power		RF path Cold switching: see Power Chart on page 3-21   Hot switching: 1 Watt CW	
		Internal terminations 1 Watt average into $50 \Omega$   External terminations 0.5 Watt average into $50 \Omega$	
TTL input	High Level	3 to 7 V : $800 \mu \mathrm{~A} \mathrm{max}$ at 7 V	
	Low Level	0 to $0.8 \mathrm{~V}: 20 \mu \mathrm{Amax}$ at 0.8 V	
Switching time (Max)	ms	15	
Life (Min)	SMA	10 million cycles	
	SMA2.9	5 million cycles	
Connectors		SMA - SMA2.9	
Actuator terminals		D-Sub 9 pin female Solder pins	
Weight	g	<100	

## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL STD 202F, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (10 cycles)
Sine vibration operating (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$
Random vibration operating	$16.91 \mathrm{G}(\mathrm{rms}) 50-2000 \mathrm{~Hz} 3 \mathrm{~min} / \mathrm{axis}$
Shock operating (MIL STD 202, Method 213B, Cond.G)	$50 \mathrm{~g} / 11 \mathrm{~ms}$, sawtooth
Humidity operating	15 to $95 \%$ relative humidity
Humidity storage (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days
Altitude operating	15,000 feet (4,600 meters)
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9
RF PERFORMANCES

Part Number	R5953-----	R5954-----		R595F-----		R5958-----	
Frequency Range GHz	DC to 6	DC to 20		DC to 26.5		DC to 40	
Impedance $\quad \Omega$	50						
Insertion Loss (max) dB	$0.20+(0.45 / 26.5) \times$ frequency ( GHz )						
Isolation (Min)	85	$\begin{gathered} \text { DC to } 6 \mathrm{GHz} \\ \text { 6 to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 85 \\ & 75 \\ & 65 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz	$\begin{gathered} 85 \\ 75 \\ 65 \\ 60 \mathrm{w} \end{gathered}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz   26.5 to 40 GHz	$\begin{aligned} & 85 \\ & 75 \\ & 65 \\ & 60 \\ & 55 \end{aligned}$
V.S.W.R. (Max)	1.15	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 20 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \\ & 1.80 \end{aligned}$
Repeatability   (Up to 10 million cycles measured at $25^{\circ} \mathrm{C}$ )	0.03 dB maximum					0.05 dB maximum	



High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: TERMINATED SPDT SWITCH

The terminated SPDT switch is a single pole double throw switch where unused ports are terminated into 50 ohms. This switch is considered a "break before make".

## RF SCHEMATIC DIAGRAM

Position E1


## POSITION INDICATORS

State 11


## Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)


D-sub Connector


Solder Pins

Position E2


State 22


## TTL drive option " 2 "

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin. (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path. (Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3)


D-sub Connector


High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: TERMINATED SPDT SWITCH

With D-Sub connector


4-40 UNC


With solder pins



8 pins $\varnothing 0.04$ / 1


All dimensions are in inches/millimeters

Connectors	A max linches $/ \mathrm{mm})$	B max linches $/ \mathrm{mm}$ )	Terminations
SMA up to 26.5 GHz	$0.291 / 7.40$	$0.067 / 1.70$	Internal
SMA 2.9 up to 40 GHz	$0.248 / 6.30$	$0.748 / 19.0$	External

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: TERMINATED 4 PORT SWITCH

The terminated 4 port bypass switch can terminate into the 50 ohms device under test.
This switch is considered a "break before make".

## RF SCHEMATIC DIAGRAM

Position E1


## POSITION INDICATORS

State 11


## Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc )
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 and RF path
3-4 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3)


State 22

## 

## TTL drive option " 2 ":

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TL
"High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 and 3-4 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path (Ex: apply TTL "High" to pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3)


D-Sub connector


Solder pins

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: TERMINATED 4 PORT BYPASS SWITCH

With D-Sub connector


4-40 UNC


With solder pins


8 pins $\varnothing 0.04 / 1$


All dimensions are in inches/millimeters

Connectors	A max (inches $/ \mathrm{mm}$ )	B max linches $/ \mathbf{m m}$ )	Terminations
SMA up to 26.5 GHz	$0.291 / 7.40$	$0.067 / 1.70$	Internal
SMA 2.9 up to 40 GHz	$0.248 / 6.30$	$0.748 / 19.0$	External

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: 5 PORT DP3T SWITCH

The non terminated 5 port DP3T switch can be used as SPDT with high power terminations, as a bypass switch. In this application, the fifth port can be terminated externally with a high power termination.
These switches are considered a "break before make".

## RF SCHEMATIC DIAGRAM



## POSITION INDICATORS

State 11


## Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc )
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and RF path 3-4 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 2-3 and 4-5 and close RF path 1-2 and 3-4)


D-Sub connector


Solder pins

Position E2


State 22


TTL drive option " 2 ":

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc )
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and 3-4 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path. (Ex: apply TTL "High" to pin E2 to open RF path 2-3 and $4-5$ and close RF path 1-2 and 3-4)



Solder pins

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## SWITCH MODEL: 5 PORT DP3T SWITCH

With D-Sub connector


With solder pins


All dimensions are in inches/millimeters

Connectors	A max linches $/ \mathrm{mm}$ )
SMA up to 26.5 GHz	$0.291 / 7.40$
SMA 2.9 up to 40 GHz	$0.248 / 6.30$

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

## POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- U.S.W.R.: 1 and cold switching



## DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.1


Optional features for DP3T switches

## GENERAL

RADIALL DP3T／SPDT terminated are designed only with SMA connectors．


Examples of dedicated applications
$\theta$


This SPDT terminated switch is composed of a DP3T with SMA connectors，and cable load for medium power terminations．The Key advantage of this solution is the ability to mount the switch with external terminations at the desired power level．

For all other connectors（N，BNC etc．．），the same function as SPDT terminated can be easily performed with a standard DPDT and an external load．


POS 1 ：J1 to J2／J3 to load


This is an example of an SPDT terminated switch that was designed with 2 seperate coils for a specific test network application．

Radiall $0^{\circ}$


DPDT

## Contents

RAMSES Series
DPDT up to 40 GHz : R577 miniature.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2 to 4-5
DPDT up to 12.4 GHz RAMSES Concept: standard R577. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6 to 4-9

Electrical Schematics
R577 miniature and standard R577. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10 to 4-13

## TITANIUM Series

High Performances DPDT Series DC - 40 GHz: R513 Series
$.4-14$ to 4-19

PLATINUM Series
High performances DPDT up to 40 GHz: R593 Series.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-20 to 4-25
Optional Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-26
DPDT PART NUMBER SELECTION GUIDE*

Digital Position		R 1-3	4: RF connectors													5: Type		6: Voltage			7:TTLopt.		8: Options				9:Terminals					10:Documentation		
Series	Configuration		$\begin{aligned} & N \\ & \frac{N}{0} \\ & 0 \\ & N \\ & \sum_{n}^{N} \end{aligned}$	$\begin{aligned} & N \\ & \mathbf{N} \\ & 0 \\ & 0 \\ & \sum_{n}^{1} \end{aligned}$	$\begin{aligned} & \frac{N}{N} \\ & 0 \\ & \frac{\infty}{\infty} \\ & \sum_{n}^{N} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & N \\ & N \\ & \sum_{i}^{N} \end{aligned}$	$\begin{aligned} & N \\ & \substack{1 \\ 0 \\ \omega \\ 0 \\ N \\ \sum_{n}^{N}} \end{aligned}$		$\begin{aligned} & N \\ & \mathbf{N} \\ & 0 \\ & 0 \\ & \sum_{0}^{1} \end{aligned}$		$\begin{aligned} & N \\ & \mathbf{N} \\ & 0 \\ & \mathbf{M} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \mathbf{I} \\ & 0 \\ & \text { N } \\ & Z_{0} \end{aligned}$	N $\mathbf{N}$ 0 0 $\vdots$ 1	$\begin{aligned} & \text { N} \\ & \mathbf{N} \\ & \underset{U}{U} \\ & \underset{U}{U} \end{aligned}$		$\begin{aligned} & \text { OT } \\ & . \underset{ভ}{U} \\ & \text { U0 } \end{aligned}$	入	ঊ	$\stackrel{>}{\sim}$		$\begin{aligned} & \stackrel{-}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \frac{5}{4} \\ & \hline \end{aligned}$		Positive common				$\stackrel{\rightharpoonup}{u}$ $\stackrel{y}{u}$ 0 0 0 5 3 3 0 0 0 0 0 0 0 0 0 0 0 0	प U 0 0 0 $\vdots$ 0 0 0 3 $\vdots$ 0 0 0 0 0 0 0 0 0 0 0 0					
		R577	3	-	4	-	F	8	E	9	-	-	-	-		1/2	3/4/5/6	2	-	3	0	1	0	1	34	4	02	5	7	-	-	-	-	-
		R577	-	-	-	-	-	-	-	-	0	1	2	5	6	1/2	3/4/5/6	2	-	3	0	1	0	1	3	4	02	5	7	-	-	-	-	-
TITANIUM	DPDT	R513	-	3	-	4	F	8	-	-	-	-	-	-		-	7	-	3	-	-	1	-	-	- 4		- -	-	-	8	9	-	C	R
PLATINUM	DPDT	R593	-	3	-	4	F	8	-	-	-	-	-	-		-	7	-	3	-	-	1	-	-	4	4	- -	-	-	8	9	-	C	R

Example of P/N: R577412020 is a DPDT SMA 18 GHz failsafe, 12 Vdc, without TTL driver, solder pins with bracket.
*For part number creation and available options, see detailed part number selection for each series.

DPDT up to 40 GHz
SHA - SMA 2.9 - QMA - DIN 1.6/5.6


Radiall's DPDT switches offer excellent reliability, high performance and operating frequencies from DC to 40 GHz . Redial's RAMSES concept guarantees a life span of 2.5 million cycles and provides a full array of options to respond to the needs of our customers.
These relays are well suited for applications across all markets including: Defense, Instrumentation, and Telecom.

Example of P/N:
R577F63105 is a DPDT SMA 26.5 GHz latching with Indicators, Self Cut-Off, 28 Vdc , TTL driver, D-Sub connector.

## PART NUMBER SELECTION

## R 577

RF Connectors:
3: SMA up to 3 GHz
E: QMA up to 6 GHz
4: SMA up to 18 GHz
F: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}(5)$
9: DIN $1.6 / 5.6$ up to 2.5 Ghz

## Type:

1: Failsafe
2: Failsafe + I.C.
3: Latching
4: Latching + I.C.
5: Latching + S.C.0. (1)
Actuator Voltage: $\qquad$

## Actuator Terminals and fixing:

0: Solder pins with bracket
2: Solder pins without bracket
5: D-Sub connector with bracket
7: D-Sub connector without bracket

6: Latching + S.C.O. + I.C. (1)
2: 12 Vdc
TTL Option:
0 : Without TTL Driver
3: 28 Vdc
1: With TTL Driver (high level) (1) (2)
I.C.: Indicator contact - S.C.O.: Self Cut-Off

1: Suppression diodes are already included in self cut-off \& TTL option
2: Polarity is not relevant to application for switches with TTL driver
3: Positive common shall be specified only with type $3,4,5$ and 6 because failsafe switches can be used with both polarities

(4): The QLF tradermark (Quick Lock Formula ®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certified connectors also guarantees the specified level of RF performance.
(5): Connector SMA2.9 is equivalent to "K connector", registered trademark of Anritsu

DPDT up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6/5.6
GENERAL SPECIFICATIONS

Operating mode			Failsafe		Latching	
Nominal operating voltage (across operating temperature)		Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$
Coil resistance ( + /-10\%)		$\Omega$	35	200	38	225
Nominal operating current at $23^{\circ} \mathrm{C}$		mA	340	140	320	125
Average power			See Power Rating Chart page 1-13			
TTL input		High Level	2.2 to 5.5 Volts		$800 \mu \mathrm{~A}$ max 5.5 Volts	
		Low Level	0 to 0.8 Volts		$20 \mu \mathrm{~A}$ max 0.8 Volts	
Switching time (Max)		ms	15			
Life			2.5 million cycles			
Connectors			SMA - SMA 2.9 - QMA - DIN 1.6/5.6			
Actuator terminals			Solder pins or male 9 pin D-Sub connector			
Operating temperature range	DIN 1.6/5.6		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
	SMA - SMA 2.9 - QMA		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage temperature range	DIN 1.6/5.6		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
	$\text { SMA - SMA } 2.9 \text { - QMA }$		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, Method 204D, Cond. C)			$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$		operating	
Shock (MIL STD 202, Method 213B, Cond. G)			$50 \mathrm{~g} / 11 \mathrm{~ms}, 1 / 2$ sine		operating	

## RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R.   (max)	Insertion loss (max) $\mathrm{dB}$	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$
DIN 1.6/5/6	DC - 2.5	DC-1	1.20	0.20	80	75
		1-25	1.30	0.30	70	
QMA	DC-6	DC-3	1.20	0.20	80	50
		3-6	1.20	0.30	70	
SMA	$\begin{gathered} D C-3 \\ D C-18 \\ D C-26.5 \end{gathered}$	DC - 3	1.20	0.20	80	50
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	65	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	50	
SMA 2.9	DC-40	DC - 6	1.30	0.30	70	50
		6-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	1.90	0.80	50	

See page 4-4 for typical RF performance

## DPDT up to 40 GHz

SMA - SMA 2.9 - QMA - DIN 1.6/5.6

## R577 TYPICAL RF PERFORMANCES

Example: DPDT SMA up to 26.5 GHz


Frequency (GHz)

Example: DPDT SMA2.9 up to 40 GHz
Insertion Loss and Isolation

V.S.W.R.


## V.S.W.R.



DPDT up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6/5.6

## TYPICAL OUTLINE DRAWING

With solder pins and bracket


With D-Sub connector and bracket


See page 4-13 for pin allocation

Connectors	SMA	SMA 2.9	QMA	DIN $1.6 / 5.6$
A max $(\mathrm{mm})$	7.4	6.3	10.8	11.5

## ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For DPDT model R577 series => Radiall part number: R599 910000


N - BNC - TNC


Radiall's DPDT switches offer excellent reliability, high performance and operating frequencies from DC to 12.4 GHz . Radiall's RAMSES concept guarantees a life span of 2.5 million cycles and provides a full array of options to respond to the needs of our customers.

These relays are well suited for applications across all markets including: Defense, Instrumentation, and Telecom.

Example of P/N:
R577122030 is a DPDT N 12.4 GHz , failsafe with Indicators, 12 Vdc, suppression diodes, solder pins with bracket.

## PART NUMBER SELECTION



## DPDT up to 12.4 GHz - Ramses Concept

N - BNC - TNC

## GENERAL SPECIFICATIONS

Operating mode		Failsafe		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$
Coil resistance (+/-10\%)	$\Omega$	35	200	38	225
Nominal operating current at $23{ }^{\circ} \mathrm{C}$	mA	340	140	320	125
Average power		See Power Rating Chart page 1-13			
TTL input	High Level	2.2 to 5.5 Volts			
	Low Level	0 to 0.8 Volts			
Switching time (Max)	ms	15			
Life		2.5 million cycles			
Connectors		N - BNC - TNC			
Actuator terminals		Solder pins or male 9 pin D-Sub connector			
Operating temperature range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, Method 204D, cond. C)		$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$		operating	
Shock (MIL STD 202, Method 213B, cond. G)		$50 \mathrm{~g} / 11 \mathrm{~ms}, 1 / 2$ sine		operating	

## RF PERFORMANCES

Connectors	Frequency Range GHz		V.S.W.R.   (max)	Insertion Loss (max) dB	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	Impedance   $\Omega$
BNC	DC-3	DC-1	1.15	0.15	85	50
		1-2	1.20	0.20	80	
		2-3	1.25	0.25	75	
N-TNC	$\begin{gathered} D C-3 \\ D C-12.4 \end{gathered}$	DC - 1	1.15	0.15	85	
		1-2	1.20	0.20	80	
		2-3	1.25	0.25	75	
		3-8	1.35	0.35	70	
		8-12.4	1.50	0.50	60	

DPDT up to 12.4 GHz - Ramses Concept
N - BNC - TNC

## R577 TYPICAL RF PERFORMANCES

Example: DPDT N/TNC up to 12.4 GHz


Example: DPDT BNC UP TO 3 GHz




DPDT up to 12.4 GHz - Ramses Concept
N - BNC - TNC

## TYPICAL OUTLINE DRAWING

With solder pins and bracket

With D-Sub connector and bracket


See page 4-13 for pin allocation

Connectors	$\mathbf{N}$	BNC	TNC
A max $(\mathrm{mm})$	18.8	11	11

## ACCESSORIES

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals. For DPDT model R577 series => Radiall part number: R599 910000


## Coaxial DPDT - Electrical Schematics

R577 Series

## FAILSAFE



## LATCHING

(

## LATCHING

WITH CUT-OFF   (suppression diodes are included)   R577-5-000	WITH CUT-OFF AND INDICATOR CONTACT (suppression diodes are included)   R577-6-000
WITH CUT-OFF AND TTL DRIVER R577-5-100	WITH CUT-OFF AND INDICATOR CONTACT (suppression diodes are included)   R577-6-100
WITH POSITIVE COMMON, NO OPTION R577-3-010	WITH POSITIVE COMMON AND INDICATOR CONTACT R577-4-010

## LATCHING

WITH POSITIVE COMMON AND SUPPRESSION DIODES R577-3-040	WITH POSITIVE COMMON, SUPPRESSION DIODES AND INDICATOR CONTACT   R577-4-040
WITH POSITIVE COMMON AND CUT-OFF (suppression diodes are included)   R577-5-010	WITH POSITIVE COMMON, CUT-OFF AND INDICATOR CONTACT (suppression diodes are included)   R577-6-010

## PIN IDENTIFICATION

Type	PIN							
	1	2	3	4	5	6	7	8
Failsafe	+		-					
Failsafe + I.C.	+		-			1	2	C
Failsafe + TTL	E		RTN	VCC				
Failsafe + I.C. + TTL	E		RTN	VCC		1	2	C
Latching   Latching + Cut-off	$\begin{gathered} -1 \text { or } \\ +1 \end{gathered}$	$\begin{gathered} -2 \text { or } \\ +2 \end{gathered}$	$\begin{gathered} +C \text { or } \\ -C \end{gathered}$					
$\begin{aligned} & \text { Latching + I.C. } \\ & \text { Latching + I.C. }+ \text { Cut-off } \end{aligned}$	$\begin{gathered} -1 \\ \text { or }+1 \end{gathered}$	$\begin{gathered} -2 \text { or } \\ +2 \end{gathered}$	$\begin{gathered} +C \text { or } \\ -C \end{gathered}$			1	2	C
Latching + Cut-off Latching + Cut-off + I.C.	E2	E1	RTN	VCC				
Latching + TTL + I.C.	E2	E1	RTN	VCC		1	2	C

## BOTTOM VIEW



Solder pins


High Performance DPDT
Titanium Series / DPDT up to 40 GHz


Radiall's TITANIUM series switches are optimised to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 2.5 million switching cycles. Radiall's TITANIUM switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N: R513473148 is a DPDT SMA 20 GHz , latching, Self Cut-Off, diodes, positive common, TTL driver, Indicators, HE10 receptacle with bracket.

## PART NUMBER SELECTION



High Performance DPDT
Titanium Series / DPDT up to 40 GHz

GENERAL SPECIFICATIONS

Operating mode			
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 / 32) \end{gathered}$	
Coil resistance ( + /-10\%)	$\Omega$	120	
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	200	
Maximum stand-by current	mA	50	
Average power		RF path Cold switching: see RF Power Rating Chart on page 4-19 Hot switching: 1 Watt CW	
TTL input	High Level	3 to 7 V	1.4 mA max at 7 V
	Low Level	0 to 0.8 Volts	-
Indicator specifications		Maximum withstanding voltage 60 V   Maximum current capacity 150 mA   Maximum « ON » resistance $2.5 \Omega$   Minimum « OFF » resistance $100 \mathrm{~m} \mathrm{\Omega}$	
Switching time (Max)	ms	15	
Life (Min)		2.5 million cycles	
Connectors		SMA - SMA 2.9	
Actuator terminals		HE10 ribbon receptacle	
Weight (Max)	g	110	

## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}$ (10 cycles)
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} \mathrm{/} 6 \mathrm{~ms}, 1 / 2$ sine
operating	
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)
RFI (MIL STD 1344, Method 3008 or IEC 61726)	40 dB at 20GHz

High Performance DPDT
Titanium Series / DPDT up to 40 GHz

## RF PERFORMANCES

Part Number		R51337314-	R51347314-		R513F7314-		R51387314-	
Frequency range	GHz	DC to 6	DC to 20		DC to 26.5		DC to 40	
Impedance	$\Omega$	50						
Insertion Loss (Max)	dB	$0.2+0.025 \times$ frequency ( GHz )						
Isolation (Min)	dB	80	$\begin{aligned} & \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ & 6 \text { to } 12.4 \mathrm{GHz} \\ & 12.4 \text { to } 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 80 \\ & 70 \\ & 65 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz	$\begin{aligned} & 80 \\ & 70 \\ & 65 \\ & 60 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 80 \\ & 70 \\ & 65 \\ & 60 \\ & 55 \end{aligned}$
V.S.W.R. (Max)		1.20	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 20 GHz	$\begin{aligned} & 1.20 \\ & 1.25 \\ & 1.40 \\ & 1.65 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz	$\begin{aligned} & 1.20 \\ & 1.25 \\ & 1.40 \\ & 1.65 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 1.20 \\ & 1.25 \\ & 1.40 \\ & 1.65 \\ & 1.70 \end{aligned}$
Repeatability (measured at $25^{\circ} \mathrm{C}$ )		0.03 dB					0.05 dB	

## TYPICAL RF PERFORMANCES



## DRIVING THE SWITCH

Transfer switches are configured with two positions. Each RF path can be closed by applying ground or TTL "High" to the corresponding "driver " pin.


Switch oannectar


Nating oable oonnector

## RF SCHEMATIC DIAGRAM



## Standard drive

- Connect pin 9 to ground (See note)
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF paths by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1-2 and 3-4)
- To select the second path, ensure that the unwanted RF path "drive" pin is disconnected from ground. Apply ground to the "drive" pin which corresponds to the desired RF paths
(Ex: apply ground to pin 5 to close RF path 1-3 and 2-4)


## TTL drive (Dual line)

- Connect pin 9 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL
"High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 7 and TTL "Low" to pin 8 to close RF paths position 1)
- To select the second path, ensure that the unwanted RF path "drive" pins are in TTL "Low" position. Apply TTL "High" to the "drive" pin which correspond to the desired RF path and TTL "low" to the undesired. (Ex: apply TTL "High" to pin 8 and TTL "Low" to pin 7 to close RF paths position 2)


## TTL drive (Single line)

- Connect pin 9 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 8 to TTL "High"
- Select (close) position 1 by applying TTL "High" to pin 7 (Ex: apply TTL "High" to pin 7 to close RF paths 1-2 and 3-4)
- Select position 2 by applying TTL "Low" to pin 7
(Ex: apply TTL "Low" to pin 7 to close RF paths 1-3 and 2-4)


## Note

Pin 9 does not need to be grounded for the switch to operate in standard drive. If pin 9 is not grounded, the position indicators will only function while the appropriate drive is applied. Therefore, if a pulse drive is used and continuous indicator operation is required, pin 9 must be grounded.

High Performance DPDT
Titanium Series / DPDT up to 40 GHz
RF PERFORMANCES

Pin number Function
$\qquad$

2 Indicator Common

4 Indicator Position "1"

6 Indicator Position " 2 "

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. The photo-MOS transistors are configured for AC and/ or DC operation. The electronic position indicators require the supply ( 20 to 32 VDC) to be connected to pin 1 and ground connected to pin 9.

## TYPICAL OUTLINE DRAWING



All dimensions are in millimeters / inches

Connectors	SMA	SMA 2.9
A max $(\mathrm{mm})$	7.4	6.3

High Performance DPDT
Titanium Series / DPDT up to 40 GHz
POWER RATING CHART
This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- U.S.W.R.: 1 and cold switching


DERATING FACTOR VERSUS V.S.W.R.


High Performance DPDT
Platinum Series / DPDT up to 40 GHz


Radiall's PLATINUM series switches are optimised to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM series switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N:
R593F73148 is a DPDT SMA 26.5 GHz , latching, Self Cut-Off, diodes, positive common, TTL driver, Indicators, HE10 receptacle with bracket.

## PART NUMBER SELECTION

RF Connectors:

3: SMA up to 6 GHz
4: SMA up to 20 GHz
F: SMA up to 26.5 GHz
8: SMA 2.9 up to 40 GHz (2)


Type:
7: Latching + Self cut-off + Indicators
Documentation:
-: Certificate Of conformity
C: Calibration certificate
R: Calibration certificate
+ RF curves

3: 24 Vdc

## High Performance DPDT

Platinum Series / DPDT up to 40 GHz

GENERAL SPECIFICATIONS

Operating mode		Latching
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 / 32) \end{gathered}$
Coil resistance (+/-10\%)	$\Omega$	120
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	200
Maximum stand-by current	mA	50
Average power		RF path Cold switching: see RF Power Rating Chart on page 4-25 Hot switching: 1 Watt CW
TTL input	High Level	3 to 7 V ( 1.4 mA max at 7 V
	Low Level	0 to 0.8 Volts
		Maximum withstanding voltage 60 V   Maximum current capacity 150 mA   Maximum « ON » resistance $2.5 \Omega$   Minimum « OFF » resistance $100 \mathrm{M} \Omega$
Switching time (Max)	ms	15
life (Min)	SMA	10 million cycles
	SMA 2.9	5 million cycles
Connectors		SMA - SMA 2.9
Actuator terminals		HE10 ribbon receptacle
Weight (Max)	g	110

## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}(10 \mathrm{cycles})$
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet $(15,240 \mathrm{~meters})$
RFI (MIL STD 1344, Method 3008 or IEC 61726)	40 dB at 20 GHz

High Performance DPDT
Platinum Series / DPDT up to 40 GHz

RF PERFORMANCES

Part Number		R59337314-	R59347314-	R593F7314-	R59387314-	
Frequency range	GHz	DC to 6	DC to 20	DC to 26.5	DC to 40	
Impedance	$\Omega$	50				
Insertion Loss (Max)	db	$0.2+0.025 \times$ frequency ( GHz )				
Isolation (Min)	dB	100	DC to 6 GHz 100   6 to 12.4 GHz 90   12.4 to 20 GHz 80	DC to 6 GHz 100   6 to 12.4 GHz 90   12.4 to 20 GHz 80   20 to 26.5 GHz 65	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz   26.5 to 40 GHz	$\begin{aligned} & 100 \\ & 90 \\ & 80 \\ & 65 \\ & 60 \end{aligned}$
V.S.W.R.   (Max)		1.20	DC to 6 GHz 1.20   6 to 12.4 GHz 1.25   12.4 to 18 GHz 1.40   18 to 20 GHz 1.65	DC to 6 GHz 1.20   6 to 12.4 GHz 1.25   12.4 to 18 GHz 1.40   18 to 20 GHz 1.65	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz   26.5 to 40 GHz	$\begin{aligned} & 1.20 \\ & 1.25 \\ & 1.40 \\ & 1.65 \\ & 1.70 \end{aligned}$
Repeatability   (measured at $25^{\circ} \mathrm{C}$ )			0.03 dB		0.05 dB	

## TYPICAL RF PERFORMANCES



## High Performance DPDT

Platinum Series / DPDT up to 40 GHz

## DRIVING THE SWITCH

Transfer switches are configured with two positions. Each RF path can be closed by applying Ground or TLL "High" to the corresponding "driver " pin.


Switch oannectar


Nating oable ounnector

## RF SCHEMATIC DIAGRAM



	RF continuity	Indicator
Position 1	$1-2 / 3-4$	ICom - 11
Position 2	$1-3 / 2-4$	ICom - 12

## Standard drive

- Connect pin 9 to ground (See note)
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF paths by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1-2 and 3-4)
- To select the second path, ensure that the unwanted RF path "drive" pin is disconnected from ground. Apply ground to the "drive" pin which corresponds to the desired RF paths
(Ex: apply ground to pin 5 to close RF path 1-3 and 2-4)


## TTL drive (Dual line)

- Connect pin 9 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC).
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 7 and TTL "Low" to pin 8 to close RF paths position 1)
- To select the second path, ensure that the unwanted RF path "drive" pins are in TTL "Low" position. Apply TTL "High" to the "drive" pin which corresponds to the desired RF path and TTL "low" to the undesired (Ex: apply TTL "High" to pin 8 and TTL "Low" to pin 7 to close RF paths position 2)


## TTL drive (Single line)

- Connect pin 9 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Connect pin 8 to TTL "High"
- Select (close) position 1 by applying TTL "High" to pin 7
(Ex: apply TTL "High" to pin 7 to close RF paths 1-2 and 3-4)
- Select position 2 by applying TTL "Low" to pin 7
(Ex: apply TTL "Low" to pin 7 to close RF paths 1-3 and 2-4)


## Note

Pin 9 does not need to be grounded for the switch to operate in standard drive. If pin 9 is not grounded, the position indicators will only function while the appropriate drive is applied. Therefore, if a pulse drive is used and continuous indicator operation is required, pin 9 must be grounded.

Pin number Function
2 Indicator Common

4 Indicator Position "1"

6 Indicator Position "2"

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply ( 20 to 32 VDC) to be connected to pin 1 and ground connected to pin 9.

## TYPICAL OUTLINE DRAWING



All dimensions are in millimeters / inches

Connectors	SMA	SMA2.9
A max $(\mathrm{mm})$	7.4	6.3



High Performance DPDT
Platinum Series / DPDT up to 40 GHz

## POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching


DERATING FACTOR VERSUS V.S.W.R.


## Optional Features for DPDT Switches

## GENERAL

A microwave circuit or component can be inserted into a transmission line by using a DPDT switch as a by-pass product. In event that the short-circuit of the microwave circuit or component is undesirable, the J1/J3 path can be left out (see application option below).


Examples of dedicated application options:


This DPDT with a cable load is used for redundancy purposes for 2 amplifiers, one working, the other one in stand-by.


This DPDT has been fitted with a specific bracket to fulfill a specific customer request.


This true By-pass
Switch is based on a
DPDT with only 3 RF
ways instead of 4 .

Component inserted in J2/J4
POS 1: J1 to J3: Direct line
POS 2: J1 to J3: Component line


Subminiature DPDT developed for test bench applications requiring low RF leakage.

Radiall $0^{\circ}$


## Contents

## SUBMINIATURE Series

$\qquad$
Electrical Schematics
R591 Series5-5 to 5-7
RAMSES Series
SPnT up to 40 GHz: R57x Series (Terminated and non Terminated) ..... 5-8 to 5-19
SPnT up to 12.4 GHz: R57x Series (standard models) ..... 5-20 to 5-26
ACCESSORIES SPnT
RAMSES Concept: All Series ..... 5-27 to 5-31
Electrical Schematics
R573 and R574 Series ..... $5-32$ to 5-37
TITANIUM Series
High performance SPnT up to 40 GHz : R51x Series ..... 5-38 to 5-45
PLATINUM Series
High performance SPnT Terminated up to 40 GHz: R594 Series ..... 5-46 to 5-53
Optional Features ..... 5-54 \& 5-37
SPNT PART NUMBER SELECTION GUIDE*

Digital Position		R1-3/model			4: RF connectors															5: Type			6: Voltage			7: Pos.	8: Options					9: Terminals				10:Documentation		
Series	Configuration				$N$      0   $M$   $\sum_{0}^{4}$	$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & \sum_{n}^{1} \end{aligned}$		$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & N \\ & \sum_{n}^{1} \end{aligned}$	$\begin{aligned} & N \\ & N \\ & 0 \\ & 0 \\ & 0 \\ & N \\ & \sum \\ & \sum \\ & n \end{aligned}$			N					$\begin{aligned} & N \\ & \mathbf{N} \\ & \mathrm{~N} \\ & \mathrm{U} \\ & \mathrm{n} \end{aligned}$						入	¿	$\underset{\sim}{\infty}$								$\grave{0}$ $\vdots$ 0 0 0 0 0 0 0 0 0 0					
SUBMIN.	SPnT	R591	-	-	-	3	-	-	7	7	8	E	-				-	-				2/6	2	-	3	4/6	0	1	23	34		0	- 5	5	-	-	-	-
RAMSES	SPnT	R57	3	4	3	-	4	-	F	-	8	E	9	0		1	2	5	6	60		2/3/4/5/8/9	2	-	3	0-9	0	1	23	34	8	0	5	-	-	-	-	-
TITANIUM	SPnT	R51	2	4	-	3	-	4	F	-	8	-	-				-	-	-		-	7	-	3	-	4/6	-	1	2	- -	-	-	-	-	7	-	C	R
PLATINUM	SPnT	R594	-		-	3	-	4	F	-	8	-	-				-	-	-		-	4/7	-	3	-	4/6	-	1	2	- -	-	-	-	-	7	-	C	R

Example of P/N: R591703400 is a SP4T SMA up to 26.5 GHz , normally open, 28 Vdc , without option, solder pins.
*For part number creation and available options, see detailed part number selection for each series.

Radiall's R591 coaxial subminiature switches have a typical operating life exceeding 25 million cycles. Providing excellent RF performance, repeatability, and a guaranteed life of 10 million cycles make these switches ideal for Automated Test Equipment (ATE) and other measurement applications. These subminiature switches are also an excellent choice for Mil/Aero applications due to their small size, light weight, and outstanding shock and vibration handling capabilities.

Example of P/N:
R591302420 is a SP4T SMA up to 6 GHz , Normally open, 12 Vdc with TTL driver and solder pins.

## PART NUMBER SELECTION

R 591

(1): Available with "solder pins" models only
(2): Polarity is not relevant to application for switches with TTL driver
(3): Suppression diodes are already included with TTL option
(4): Available with "normally open" models only

(5): The QLF tradermark (Quick Lock Formula®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark.
linaime Using QLF certified connectors also guarantees the specified level of RF performances.
(6): Connector SMA2.9 is equivalent to "K connector®", registered trademark of Anritsu

## SUBMINIATURE SPnT up to 40 GHz

SMA - SMA 2.9 - QMA

## GENERAL SPECIFICATIONS

Operating mode		Normally open		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (21 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (21 / 30) \end{gathered}$
Coil resistance ( + /-10\%)	$\Omega$	48	250	60	285
Operating current at $23^{\circ} \mathrm{C}$	mA	250	110	200	98
Average power		See RF Power Rating Chart page 1-13			
TTL input	High Level	2.2 to 5.5 Volts		$800 \mu \mathrm{~A}$ max 5.5 Volts	
	Low Level	0 to 0.8 Volts		$20 \mu \mathrm{~A}$ max 0.8 Volts	
Switching time (Max)	ms	10			
Life		10 million cycles (SMA, QMA) / 2 million cycles (SMA2.9)			
Connectors		SMA - QMA - SMA 2.9			
Actuator terminals		Solder Pins: double row connector for wrapping, soldering $\left(250^{\circ} \mathrm{C}\right.$ $\max / 30 \mathrm{sec}$ ), or connecting to 2.54 mm pitch female connector. 9 pin micro-D receptacle M83513/07-A according to MIL-C-85513.			
Operating temperature range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Sine vibration   (According to MIL STD 202, Method 204D, Cond. D)		$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$		operating	
Random vibration   (According to MIL STD 202, Method 214A, Profile I, Cond. F)		$50-2000 \mathrm{~Hz}, 20.71 \mathrm{~g}$		operating	
Shock   (According to MIL STD 202, Method 213B, Cond. C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine		operating	

## RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R.   (max)	Insertion loss (max) $\mathrm{dB}$	Isolation (min) dB	Impedance $\Omega$
QMA / SMA	DC-6	DC-3	1.20	0.20	80	50
		3-6	1.30	0.30	70	
SMA	DC-26-5	DC-3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.60	0.60	55	
SMA 2.9	DC-40	DC - 3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	2.20	1.10	45	

TYPICAL RF PERFORMANCES


Frequency (GHz)

TYPICAL OUTLINE DRAWING (1)

Solder pin Model

(1) : For SP4T, ways 3 and 6 not connected All dimensions are in mm/inches
V.S.W.R.


Micro-D Model


9 pin Micra-D receptacle
2-56 UNL-2B THD


SMA - SMA 2.9 - QMA

## R591 SERIES ELECTRICAL SCHEMATICS



## R591 SERIES ELECTRICAL SCHEMATICS



SMA - SMA 2.9 - QMA

R591 SERIES ELECTRICAL SCHEMATICS

LATCHING SEPARATED RESET WITH POSITIVE COMMON AND SUPPRESSION DIODES R591-6- -4-


## PIN IDENTIFICATION

Solder pins (top view)*
*Compatible with 2.54 mm pitch double row
16 contact female connector
NC: not connected
For SP4T, ways 3 and 6 not connected
Pin $R=$ reset of all paths 9 pin Micro-D (top view)


Type		C	V	1	2	3	4	5	6	R	R1	R2	R3	R4	R5	R6
Normally open	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	NC						
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	NC						
Latching global reset	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	+reset	NC	NC	NC	NC	NC	NC
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	-reset	NC	NC	NC	NC	NC	NC
Latching individual reset*	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	NC	+res. 1	+res. 2	+res. 3	+res. 4	+res. 5	+res. 6
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	NC	-res. 1	-res. 2	-res. 3	-res. 4	-res. 5	-res. 6
Normally open with TTL drive		RTN	VCC	E1	E2	E3	E4	E5	E6	NC						

[^0]SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6


Radiall's R573 \& R574 multithrow coaxial switches are offered in many configurations (over 40,000 possible combinations) including Terminated and non Terminated options. Radiall offers reliable products, with shorter delivery times and competitive pricing. Excellent typical RF performance make RAMSES switches ( 40 GHz ) ideal for Automated Test Equipment (ATE) and other measurement applications.

These switches are suitable for defense, industrial, instrumentation and telecommunication applications.

Example of P/N:
R574453605 is a terminated SP6T SMA up to 18 GHz, Latching, Self CutOff, 28 Vdc , Indicators and male 25 pin D-Sub connector.

## PART NUMBER SELECTION


I.C.: Indicator contact / S.C.O. : Self Cut-Off / A.R. : Auto Reset
(1): These models are already equiped with suppression diodes
(2): Standard products are equiped with negative common
(3): Latching BCD driver enables also a global reset through driver code 0000 (see BCD logic coding page 1-11)
(4): Available only up to 6 positions
(5): Model " 3 " only
(6): Model "4" only up to 6 positions
(7): Option not available for type 4, 5, 8 and 9
(8): Option available only with type $0,1,8$ and 9
(9): Polarity is not relevant to application for switches with TTL driver
(10): 10 positions are available only up to $22 \mathrm{GHz}, 12$ positions only up to 18 GHz

(10)(11) : The QLF tradermark (quick lock formula®) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certificied connectors also guarantees the specified level of RF performance
(12) connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu
*For precisions see availabilty of options chart page 5-9

## SPnT Terminated \& non Terminated up to 40 GHz

SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## GENERAL SPECIFICATIONS

Type 2, 3, 4 and 5:
Latching models have a RESET pin which commands the reset of all positions. This command should be used before switching from one position to another. If not, two positions will be set at the same time.
Note: During the RESET operation the global current is: the nominal operating current multiplied by the number of positions.
Type 8, 9:
Latching models with AUTOMATIC RESET are available; these products have an internal SET/RESET circuit which automatically resets all the non-selected positions and sets the desired position. This option simplifies the use of latching switches by suppressing the RESET command in switching sequence.
An electronic circuit supplies successively groups of 2,3 or 4 actuators, in order to limit the maximum current. The current with this option is the total current of 2,3 or 4 reset coils in the same time (see table below).

Example: During the AUTOMATIC RESET operation, at $28 \mathrm{Vdc}, 4$ position switch has a temporary consumption of only 250 mA , during 40 ms maximum.

## SWITCHING SEQUENCE

## For SP6 to 8T


$n=$ number of positions

Operating Total Current At $23^{\circ} \mathrm{C}(\mathrm{mA})$ SPnT Latching				
Number	12 Volts		28 Volts	
of positions	Manual Reset	Automatic Reset	Manual Reset	Automatic Reset
3 to 4	$320 \times \mathrm{n}$	640	$125 \times \mathrm{n}$	250
5 to 8	$320 \times \mathrm{n}$	960	$125 \times \mathrm{n}$	375
9 to 12	$320 \times \mathrm{n}$	1280	$125 \times \mathrm{n}$	500

For SP9 to 12T


Availability of options according to both type and number of positions

Type	Numbers of positions	Available options
0 or 1	3 to 12	$0-1-2-3-4-8$
2 or 3	3 to 6	$0-1-2-3-4$
or 5	7 to 12	$0-1-3-4$
	3 to 6	$0-2$
	7 to 12	Not available
	3 to 12	$0-2-8$

SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6
GENERAL SPECIFICATIONS

Operating mode		Normally open		Latching			
Nominal operating voltage	Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$		
Coil resistance (+/-10\%)	$\Omega$	47.5	275	See table on previous page			
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	250	102				
Average power		See Power Rating Chart page 1-13					
TTL input	High Level	2.2 to 5.5 V (TTL Option) / $800 \mu \mathrm{~A}$ max 5.5 volts 3.5 to 5.5 V (BCD Option)					
	Low Level	0 to 0.8 V (TTL Option) / $20 \mu \mathrm{~A}$ max 0.8 volts 0 to 1.5 V (BCD Option)					
Indicator rating		1 Watt / 30 Volts / 100 mA					
Switching time (Max)	ms	```15 ms For automatic reset models: SP3T to SP6T => 40 ms SP7T to SP12T => 50 ms```					
Life (Min)	Non terminated SP3 to 6T (R573 serie)	SMA - QMA		SMA 2.9-1.6/5.6			
		5 million cycles		2 million cycles			
	Terminated SP3 to 6T (R574 serie)	2 million cycles					
	SP7 to 12T (all models)						
Connectors		SMA - SMA2.9 - QMA - DIN 1.6/5.6					
Actuator terminals		Solder pins or male 25 pin D-sub connector					
Operating temperature range	DIN 1.6/5.6	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$					
	SMA - SMA 2.9 - QMA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Storage temperature range	DIN 1.6/5.6	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
	SMA - SMA 2.9 - QMA	$-55^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$					
Vibration (MIL STD 202, method 204D, cond.D)		$\begin{aligned} & 10-2000 \mathrm{~Hz}, 20 \mathrm{~g} \\ & \text { operating for SP3 to 8T, survival for SP7 to } 12 \mathrm{~T} \end{aligned}$					
Shock (MIL STD 202, method 213B, cond.C)		$\begin{aligned} & 100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2 \text { sine } \\ & \text { operating for SP3 to 8T,survival for SP7 to 12T } \end{aligned}$					

## RF PERFORMANCES

SMA Connector						
Number of positions	Frequency Range GHz		V.S.W.R.   (max)	$\begin{aligned} & \text { Insertion Loss (max) } \\ & \mathrm{dB} \end{aligned}$	$\underset{d B}{\text { Isolation (min) }}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$
3 to 6	$\begin{gathered} D C-3 \\ D C-18 \\ D C-26.5 \end{gathered}$	DC-3	1.20	0.20	80	50
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	50	
7 to 8	$\begin{gathered} D C-3 \\ D C-26.5 \end{gathered}$	DC - 3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-16	1.50	0.55	60	
		16-18	1.60	0.60	60	
		18-22	1.70	0.70	60	
		22-26.5	2.00	1.10	55	
		DC - 3	1.20	0.20	80	
		3-8	1.30	0.30	70	
	DC-3	8-12.4	1.40	0.40	60	
9 to 10	DC-22	12.4-15.5	1.50	0.50	60	
		15.5-18	1.70	0.70	55	
		18-22	1.80	0.80	55	
11 to 12	$\begin{gathered} D C-3 \\ D C-18 \end{gathered}$	DC-3	1.20	0.20	80	
		3-8	1.40	0.40	70	
		8-12.4	1.60	0.60	60	
		12.4-15	1.70	0.70	60	
		15-18	1.80	0.80	50	

## SPnT Terminated \& non Terminated up to 40 GHz

SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## RF PERFORMANCES



## See page 5-12, 5-13, 5-14 and 5-15 for typical RF performances

## R573 AND R574 TYPICAL RF PERFORMANCES

Example: SP6T QMA up to 6 GHz

Insertion Loss and Isolation

V.S.W.R.


SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

Example: Non terminated SP6T SMA up to 18 GHz Insertion Loss and Isolation


Frequency (GHz)
Example: Non terminated SP6T SMA 2.9 up to 26.5 GHz


Example: Non terminated SP6T SMA 2.9 up to 40 GHz Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.

V.S.W.R.


## SPnT Terminated \& non Terminated up to 40 GHz

SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

Example: Terminated SP6T SMA up to 18 GHz
Insertion Loss and Isolation


Example: Terminated SP6T SMA up to 26.5 GHz


Example: Terminated SP6T SMA 2.9 up to 40 GHz Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.

V.S.W.R.


SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6
Example: Non terminated SP6T 1.6/5.6 up to 2.5 GHz Insertion Loss and Isolation


Example: SP8T SMA up to 26.5 GHz
Insertion Loss and Isolation


Example: SP10T SMA up to 26.5 GHz
Insertion Loss and Isolation

V.S.W.R.


## V.S.W.R.


V.S.W.R.


SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

Example: SP12T SMA up to 18 GHz

Insertion Loss and Isolation


Frequency (GHz)

## TYPICAL OUTLINE DRAWINGS

NON TERMINATED 3 to 6 positions

Connectors	A max (mm)
SMA up to 26.5 GHz	7.4
SMA2.9 up to 40 GHz	
QMA up to 6 GHz	6.3
DIN 1.6/5.6 up to 2.5 GHz	
Solder   pins	10.8
Type 0 or 1 with option $0-1$ - 3 or 4	
Type 2 or 3 with option 0 or 1	




SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## TYPICAL OUTLINE DRAWINGS

NON TERMINATED 3 to 6 positions (continued)

## Solder pin model



TERMINALS


Type 0 or 1 with option 2 or 8
Solder
pins Type 2 or 3 with option 2-3-4 or 8

Type 4-5-8 or 9 with option 0-2 or 8

All models

Connectors	A max (mm)
SMA up to 26.5 GHz	7.4
SMA 2.9 up to 40 GHz	6.3
QMA up to 6 GHz	10.8
DIN $1.6 / 5.6$ up to 2.5 GHz	11.5

D-Sub connector

> D-sub model


SPnT Terminated \& non Terminated up to 40 CHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## TYPICAL OUTLINE DRAWINGS

TERMINATED 3 to 6 positions


	A	B
Type $0-1-2$ or 3 with option $0-1-3$ or 4	Solder Pins	D-Sub Connector
Type $0-1-2$ or 3 with option 2 or 8	46.5	61.5
Type $4-5-8$ or 9 with option $0-1-2$ or 8	55.5	61.5

SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## TYPICAL OUTLINE DRAWINGS

TERMINATED 3 to 6 positions $26.5 \mathrm{GHz} \& 40 \mathrm{GHz}$

### 26.5 GHz model



40 GHz model


	A	B
Type $0-1-2$ or 3 with option $0-1-3$ or 4	Solder Pins	D-Sub Connector
Type $0-1-2$ or 3 with option 2 or 8	48.5	63.5
Type $4-5-8$ or 9 with option $0-1-2$ or 8	57.5	63.5

SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## TYPICAL OUTLINE DRAWINGS

TERMINATED or NON TERMINATED 7 to 12 positions

Type		A (max) mm
Type $0-1-2$ or 3 with option $0-1-3$ or 4	Solder Pins	D-Sub connector
Type $0-1-2$ or 3 with option 2 or 8 and	50	66
Type $4-5-8$ or 9 with option $0-1-2$ or 8	61	66


Number of positions	B diameter	C diameter	D diameter	E
7-8	49.8	44.7	56.9	4 holes M3 depth 4 mm
9-10	30.5	44.7	63.5	
11-12	40.6	55.9	68.3	

10 position model
Terminated up to 18 GHz with solder pins


## 12 position model

Terminated up to 12.4 GHz with D-Sub


SPnT up to 12.4 GHz - RAMSES Concept

## N-BNC - TNC



Radiall's R573 \& R574 multithrow coaxial switches are offered in many configurations (over 40,000 possible combinations) including Terminated and non Terminated options. Radiall offers reliable products, with shorter delivery times and competitive pricing. Excellent typical RF performance make RAMSES switches ( 12.4 GHz ) ideal for Automated Test Equipment (ATE) and other measurement applications.

These switches are suitable for defense, industrial, and telecommunication applications.
Example of P/N:
R573103600 is a SP6T N up to 12.4 GHz , Normally Open, 28 Vdc, and solder pins.

## PART NUMBER SELECTION

## R 57



## Actuator Terminals:

0 : Solder pins
5: D-Sub connector

## Options:*

0: Without option
1: Positive common (2) (6)
2: Compatible TTL driver (1) (8)
3: With suppression diodes
4: With suppression diodes and positive common (2) (6)
8: BCD TTL driver compatible (1) (3) (7) (8)

## Type:

0 : Normally open
1: Normally open + I.C.
2: Latching
3: Latching + I.C.
4: Latching + S.C.O. (1) (4)
5: Latching + S.C.O. + I.C. (1) (4) Actuator
8: Latching + S.C.O. + A.R. (1) Voltage:

9: Latching + S.C.O. + I.C. + A.R. (1)
2: 12 Vdc
3: 28 Vdc

## Number of positions:

3: 3 Positions	8: 8 Positions
4: 4 Positions	9:9 Positions
5: 5 Positions	0:10 Positions
6:6 Positions	1:11 Positions
7: 7 Positions	2:12 Positions

I.C.: Indicator contact / S.C.O.: Self Cut-Off / A.R.: Auto Reset
(1): These models are already equiped with suppression diodes
(2): Standard products are equiped with negative common
(3): Latching BCD driver enables also a global reset through driver code 0000 (see BCD logic coding page 1-13)
(4): Available only up 6 positions
(5): Model " 3 " only
(6): Option not available for type 4, 5, 8 and 9
(7): Option available only with type $0,1,8$ and 9
(8): Polarity is not relevant to application for switches with TTL driver
(9) 7 to 12 positions are available only up to 8 GHz
*For precisions see availabilty of options chart page 5-21

## SPnT up to 12.4 GHz - RAMSES Concept

## N - BNC - TNC

## GENERAL SPECIFICATIONS

Type 2, 3, 4 and 5:
Latching models have a RESET pin which commands the reset of all positions. This command should be used before switching from one position to another. If not, two positions will be set at the same time.

Note: During the RESET operation the global current the nominal operating current multiplied by the number of positions.

## Type 8, 9:

Latching models with AUTOMATIC RESET are available; these products have an internal SET/RESET circuit which automatically resets all the non-selected positions and sets the desired position. This option simplifies the use of latching switches by suppressing the RESET command in switching sequence.
An electronic circuit supplies successively groups of 2,3 or 4 actuators, in order to limit the maximum current. The current with this option is the total current of 2,3 or 4 reset coils in the same time (see table below).

Example: During the AUTOMATIC RESET operation, at $28 \mathrm{Vdc}, 4$ position switch has a temporary consumption of only 250 mA , during 40 ms maximum.

## SWITCHING SEQUENCE

For SP6 to 8T

$n=$ number of positions

Operating Total Current At $23{ }^{\circ} \mathrm{C}(\mathrm{mA}) \mathrm{SPnT}$   Latching				
Number   of   positions	Manual   reset	Automatic   reset	Manual   reset	Automatic   reset
3 to 4	$320 \times n$	640	$125 \times n$	250
5 to 8	$320 \times n$	960	$125 \times n$	375
9 to 12	$320 \times n$	1280	$125 \times n$	500

For SP9 to 12T


Availability of options according to both type and number of positions

Type	Numbers of positions	Available options
0 or 1	3 to 12	$0-1-2-3-4-8$
2 or 3	3 to 6	$0-1-2-3-4$
4 or 5	7 to 12	$0-1-3-4$
8 or 9	7 to 6	$0-2$
	3 to 12	Not available

## SPnT up to 12.4 GHz - RAMSES Concept

## N - BNC - TNC

## GENERAL SPECIFICATIONS

Operating mode			Normally open		Latching			
Nominal   lacross op		Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$		
Coil resist		$\Omega$	47.5	275	See table on previous page			
Nominal op		mA	250	102				
Average power			See Power Rating Chart page 1-13					
TTL input		High Level	3.5 to 5.5 V (BCD Option)		$800 \mu \mathrm{~A}$ max 5.5 volts			
		Low Level	0 to 1.5 V (BCD Option)	0 to 0.8 V (TTL Option) /		$20 \mu \mathrm{~A}$ max 0.8 volts		
Indicator rating			1 Watt / 30 Volts / 100 mA					
Switching time (Max) ms			$\begin{aligned} & 15 \mathrm{~ms} \\ & \text { For automatic reset models: SP3T to SP6T } \Rightarrow 40 \mathrm{~ms} \\ & \text { SP7T to SP12T } \Rightarrow 50 \mathrm{~ms} \end{aligned}$					
Life (Min)	Non terminated SP3 to 6T (R573 serie)		2 million cycles					
	Terminated SP3 to 6T (R574 serie)							
	SP7 to 12T (all models)							
Connectors			N - TNC - BNC					
Actuator terminals			Solder pins or male 25 pin D-Sub connector					
Operating temperature range			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Storage temperature range			$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Vibration (MIL STD 202, method 204D, cond.C)			$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$		operating			
Shock (MIL STD 202, method 213B, cond.C)			$50 \mathrm{~g} / 1 \mathrm{~ms}, 1 / 2$ sine		operating			

## RF PERFORMANCES

N - TNC - BNC Connector						
Number of positions	Frequency range GHz		V.S.W.R.   (max]	```Insertion loss (max) dB```	$\begin{gathered} \text { Isolation (min) } \\ d B \end{gathered}$	Impedance $\Omega$
3 to 6	DC-12.4	DC-3	1.20	0.20	80	50
		3-8	1.35	0.35	70	
		8-12.4	1.50	0.50	60	
7 to 10	DC-8	DC - 3	1.30	0.30	80	
		3-8	1.50	0.50	70	
11 to 12	DC-8	DC-3	1.35	0.50	70	
		3-8	1.70	1.00	60	

SPnT up to 12.4 GHz - RAMSES Concept
N-BNC - TNC

## R573 AND R574 TYPICAL RF PERFORMANCES

Example: SP6T N up to 12.4 GHz


Example: SP6T TNC up to 12.4 GHz
Insertion Loss and Isolation


Example: SP8T up to 8 GHz
Insertion Loss and Isolation

V.S.W.R.

V.S.W.R.

V.S.W.R.


SPnT up to 12.4 GHz - RAMSES Concept
N - BNC - TNC

## TYPICAL OUTLINE DRAWINGS

TERMINATED or NOT 3 to 12 positions

Type	A max (mm)		Connectors	F max (mm)
	Solder Pins	D-Sub Connector	N	18.8
Type 0-1-2 or 3 with option 0-1-3 or 4	56	66	BNC	11
Type 0-1-2 or 3 with option 2 or 8 and	71	71	TNC	11
Type 4-5-8 or 9 with option 0-1-2 or 8				
Number of positions	B diameter	C diameter	D diameter	E
3-6	54	44.7	63.5	6 holes M4/60 ${ }^{\circ}$
7-8	67.7	58.9	76.2	4 holes M4/90 ${ }^{\circ}$
9-10	88.9	76.2	101.6	5 holes M4/72 ${ }^{\circ}$
11-12	67.7	101.6	127	6 holes M4/60 ${ }^{\circ}$

Model SP8T positions up to 8 GHz
with solder pins


Model SP10T positions up to 8 GHz
D-Sub male connector


## RF CONNECTORS ALLOCATION

See on page 5-25 and 5-26

SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## RF CONNECTORS ALLOCATION FOR SPNT SERIES

Connectors A: 1.6/5.6, QMA, SMA, SMA 2.9
Other Connectors: $\mathrm{N}, \mathrm{BNC}, \mathrm{TNC}$

SPnT 3 ways			
NON TERMINATED Version		terminated version	
Up to 40 GHz models Without option Connectors A	$\begin{gathered} \text { Up to } 40 \mathrm{GHz} \text { models } \\ \text { With option } \\ \text { Connectors A and other connectors } \end{gathered}$	Up to 22 GHz models Connectors A and other connectors	26.5 GHz and 40 GHz models with SMA - SMA 2.9
	$\left(\begin{array}{ll} 1 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{array}\right) 2$		
SPnT 4 ways			
NON TERMINATED Version		TERMINATED Version	
Up to 40 GHz models Without option Connectors A	$\begin{gathered} \text { Up to } 40 \mathrm{GHz} \text { models } \\ \text { With option } \\ \text { Connectors A and other connectors } \end{gathered}$	Up to 22 GHz models Connectors A and other connectors	26.5 GHz and 40 GHz models with SMA - SMA 2.9
SPnT 5 ways			
NON TERMINATED Version		TERMINATED Version	
Up to 40 GHz models Conhout option Connectors A	$\begin{gathered} \hline \text { Up to } 40 \mathrm{GHz} \text { models } \\ \text { With option } \\ \text { Connectors A and other connectors } \end{gathered}$	Up to 22 GHz models Connectors A and other connectors	26.5 GHz and 40 GHz models with SMA - SMA 2.9
	$\underbrace{1}_{5} \underbrace{10}_{0})_{0}^{2}$		

SPnT Terminated \& non Terminated up to 40 GHz
SMA - SMA 2.9 - QMA - DIN 1.6 / 5.6

## RF CONNECTORS ALLOCATION (CONTINUED)

Connectors A: 1.6/5.6, QMA, SMA, SMA 2.9
Other Connectors: N, BNC, TNC

SPnT 6 ways			
NON TERMINATED Version		TERMINATED Version	
Up to 40 GHz models Without Option Connectors A	Up to 40 GHz models With Option Connectors A and other connectors	Up to 22 GHz models Connectors A and other connectors	26.5 GHz and 40 GHz models with SMA - SMA 2.9


SPnT 7 and 8 ways	SPnT 9 and 10 ways	SPnT 11 and 12 ways
All connectors	All connectors	All connectors

## ACCESSORIES

A printed circuit board interface connector has been designed for easy mounting on terminals (must be ordered separately). Refer to page 5-27 for details.

Accesories - RAMSES Concept
All Connectors

## PRINTED CIRCUIT BOARD INTERFACE CONNECTOR

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals.
For SPnT model R573 and R574 series: Radiall part number: R599 906000 for 3 to 6 positions
R599 908000 for 7 to 8 positions
R599 900000 for 9 to 10 positions
R599 902000 for 11 to 12 positions

R599902000


## Accessories - RAMSES Concept

All Connectors

## MOUNTING BRACKET

A metal bracket has been designed for an easy mechanical mounting of our SPnT switches for customer installation.
These brackets must be ordered separately and assembled according to our recommended process on the following page.


MOUNTING BRACKET


## Accessories - RAMSES Concept

All Connectors

FOR MODELS WITH CONNECTORS SMA, QMA, SMA 2.9, DIN 1.6/5.6

Number of positions	Type	Options	Model	Part number
3 to 6 positions	All	2 \& 8	R573 series	R599920000
	4, 5, 8, \& 9	All		
	All	All	R574 series	
7 \& 8 positions	All	All	R573 series	R599920000
			R574 series	
$9 \& 10$ positions	All	All	R573 series	R599921000
			R574 series	
11 \& 12 positions	All	All	R573 series	R599921000
			R574 series	

FOR MODELS WITH CONNECTORS N, TNC, BNC

Number of positions	Type	Options	Model	Part number
3 to 6 positions	All	All	R573 series	R599921000
7 to 12 positions	All	All	R574 series	
			R573 series	Rot Available

Adhesive Bonding Process

1) Clean the can with alcohol (Isopropanol or Ethanol).
2) Remove the protective adhesive tape surface.
3) Glue the mounting bracket ONLY on the blue can and NOT on the RF body.
DO NOT glue mounting bracket on the marking (See drawing).
4) Firmly press the mounting bracket against the can, and maintain pressure for several seconds
( 10 seconds min ) to properly bond the unit (See notes 1 \& 2).
5) The switch can now be installed on your equipment with 4 screws (not included).


## Accessories - RAMSES Concept

All Connectors

## MOUNTING SQUARE FLANGE

A square flange has been designed for easy mechanical mounting of our SPnT switches for customer installation. These flanges must be ordered separately (similar to the mounting bracket) and assembled according to our recommended process
 Typical Outline Drawing


Material: Aluminium with Cr3 passivation

Radiall part number	A (mm)	B (mm)	C (mm)	D (mm)	E (mm)
R599 308000	57.15	45.75	27	2	9
R599 309000	57.15	45.75	44.70	2	9
R599 310000	63.45	53.45	27	2	9
R599 311000	63.45	53.45	44.70	2	9
R599 312000	63.45	53.45	44.70	2	9
R599 313000	69.80	59.80	44.70	2	9
R599 314000	74.60	64.60	55.88	2	9
R599 315000	71.10	60.30	44.70	3	16.20

FOR MODELS WITH CONNECTORS SMA, QMA, SMA2.9, 1.6/5.6

Number of positions	Type	Options	Model	Part number
3 to 6 positions	All	All	R573 series	R599310000
				R599308000
			R574 series	R599311000
				R599309000
7 to 8 positions	All	All	R573 series	R599312000
			R574 series	
9 to 10 positions	All	All	R573 series	R599313000
			R574 series	
11 to 12 positions	All	All	R573 series	R599314000
			R574 series	

## FOR MODELS WITH CONNECTORS N, TNC, BNC

Number of positions	Type	Options	Model	Part number
3 to 6 positions	All	All	R573 series	R599315000

Accessories - RAMSES Concept
All Connectors

## D-SUB CONNECTOR LOCATION



## ASSEMBLY INSTRUCTIONS

1) Assemble the square flange on the RF body of the switch as the following drawing below. ATTENTION: Don't forget to correctly position the reference in line with the mark for port 1.
2) Tighten the 4 screws (delivered with the square flange).


## NORMALLY OPEN



## NORMALLY OPEN



## LATCHING

WITHOUT OPTION $\text { R573-2- } 0 \text { / R574-2- } 0$			WITH INDICATOR CONTACT R573-3- 0 / R574-3-0-		
		Power input terminals   Actuators   RF inputs			Power input terminals   Indicator terminals   Actuators   inputs
WITH SUPPRESSION DIODES R573 -2- 3 / R574-2- -3-			WITH SUPPRESSION DIODES AND INDICATOR CONTACT R573-3-3 / R574-3- -3-		
		Power input terminals   Actuators   inputs			Power input terminals   Indicator terminals   Actuators   RF inputs
WITH TTL DRIVER   (supression diodes are includ $\text { R573 -2- } 2 \text { / R574 -2- -2- }$			WITH TTL DRIVER AND INDICA (supression diodes are include R573-3- 2 / R574-3- -2-	R CONTACT	
		Power input terminals			Power input terminals $\square$
		Actuators   RF inputs			Indicator terminals   Actuators   RF inputs

## LATCHING



## LATCHING



## LATCHING



Optional Features for SPnT (see additional examples on page 5-54)
Examples of dedicated application options


4P3T with redundancy channel on Out 4
In 1 to Out 1, $\ln 2$ to Out 2, In 3 to Out 3


SP6T terminated with External terminations

A Custom Matrix Switch (4P3T ) with 4 Input ports and 4 Output ports configured for 3 transmission systems and one redundancy
channel ( $\mathrm{N}+1$ : N type). This product can be used also as a SP4T Terminated with low external VSWR or medium power terminations.

High Performance Multiport Switches
TITANIUM Series / SPnT up to 40 GHz


PART NUMBER SELECTION

Radiall's TITANIUM switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 2.5 million switching cycles, Radiall's TITANIUM switches are a perfect solution for automated test and measurement equipment, as well as signal monitoring devices.

Example of $\mathrm{P} / \mathrm{N}$ :
R514F73617 is a SP6T SMA up to 26.5 GHz , Latching, Indicators, Self cut-off, Auto-Reset, 24 Vdc and HE10 receptacle.

(1) connector SMA 2.9 is equivalent to "K connector $®$ ", registered trademark of Anritsu.

High Performance Multiport Switches
TITANIUM Series / SPnT up to 40 GHz

## GENERAL SPECIFICATIONS



## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C} \mathrm{to}+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}(10$ cycles $)$
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10$ days
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55 dB at 20GHz
Magnetic field	$<5.10-5$ gauss at 1 meter

High Performance Multiport Switches
TITANIUM Series / SPnT up to 40 GHz

## RF PERFORMANCES

Part number		$\begin{aligned} & \text { R51-3-34-7 } \\ & \text { R51-3-36-7 } \end{aligned}$	$\begin{aligned} & \text { R51-4-34-7 } \\ & \text { R51-4-36-7 } \end{aligned}$		$\begin{aligned} & \text { R51-F-34-7 } \\ & \text { R51-F-36-7 } \end{aligned}$		$\begin{aligned} & \text { R51-8-34-7 } \\ & \text { R51-8-36-7 } \end{aligned}$	
Frequency Range	GHz	DC to 6	DC to 20		DC to 26.		DC to 40	
Impedance	$\Omega$	50						
Insertion Loss (Max)	dB	$0.3+0.015 \times$ frequency ( GHz )						
Isolation (Min)	dB	80	DC to 6 GHz 80   6 to 12.4 GHz 70   12.4 to 20 GHz 65		DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz	$\begin{aligned} & 80 \\ & 70 \\ & 65 \\ & 60 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	80 70 65 60 55
V.S.W.R. (Max)		1.20	$\begin{aligned} & \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ & 6 \text { to } 12.4 \mathrm{GHz} \\ & 12.4 \text { to } 20 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 1.20 \\ & 1.35 \\ & 1.45 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 20 GHz   20 to 26.5 GHz	$\begin{aligned} & 1.20 \\ & 1.35 \\ & 1.45 \\ & 1.70 \end{aligned}$	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz   26.5 to 40 GHz	1.20 1.35 1.45 1.70 1.90
Third order inter   Modulation		-120 dBC typical (2 carriers 20w)						
Repeatability (measured at $25^{\circ} \mathrm{C}$ )		0.03 dB					0.05 dB	

## TYPICAL RF PERFORMANCES



## High Performance Multiport Switches

TITANIUM Series / SPnT up to 40 GHz

## ELECTRONIC POSITION INDICATORS

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to a selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for $A C$ and/or DC operation. The electronic position indicators require the supply ( 20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.

Pin number Function
Indicator Common

## TYPE 7: WITH TTL (OPTION "2") / WITHOUT TTL (OPTION "1") AND INDICATORS

Each RF path can be closed by applying ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.


Mating cable connector:

## Standard drive option " 1 ":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement), then apply ground to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are disconnected from ground. Complete the operation by applying ground to pin 16

TTL drive option "2":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are in TTL "low" position (to prevent multiple RF path engagement), then apply TTL "high" to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position. Complete the operation by applying TL "High" to pin 16


## Break-Before-Make:

Open the undesired RF path for at least 15 minutes (minimum), then close the new RF port

## Make-Before-Break:

Ensure that the previously selected RF path "drive" is connected to ground (or TTL "High" for option "2"), then close the new RF path

High Performance Multiport Switches
TITANIUM Series / SPnT up to 40 GHz

## TYPICAL OUTLINE DRAWING

SMA connectors


SMA2.9 connectors


Ways 1 and 4 are not connected for SP4T switches.

High Performance Multiport Switches
TITANIUM Series / SPnT up to 40 GHz

## POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching



## DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1.


Ways 1 and 4 are not connected for SP4T switches.

High Performance Multiport Switches
PLATINUM Series / SPnT terminated up to 40 GHz


Radiall's PLATINUM series switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles, Radiall's PLATINUM series switches are a perfect solution for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N:
R594873427 is a SPnT SMA2.9 up to 40 GHz , Latching with Indicators, Self cut-off, Auto-Reset, TTL driver and HE10 connector.

## PART NUMBER SELECTION


(1) connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu.

Ways 1 and 4 are not connected for SP4T switches.

## High Performance Multiport Switches

PLATINUM Series / SPnT terminated up to 40 GHz

## GENERAL SPECIFICATIONS

Operating mode		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 / 32) \end{gathered}$	
Coil resistance (+/-10\%)	$\Omega$	120	
Operating current at $23^{\circ} \mathrm{C}$	mA	200	
Maximum stand-by current	mA	50	
Average power		RF path Cold switching: See Power page 5-53 Hot switching: 1 Watt Cw	
		Internal terminations 1 Watt average into $50 \Omega$	
TTL input	High Level	3 to 7 V	1.4 mA max at $\mathrm{Vcc}=\mathrm{Max}$
	Low Level	0 to 0.8 Volts	-
Indicator specifications		Maximum withstanding voltage   Maximum current capacity   Maximum "ON" resistance   Minimum "OFF" resistance	60 V 150 mA $2.5 \Omega$ 100Mn
Switching time (Max)	ms	15	
Life (Min) for	SMA	10 million cycles	
Lre (Min) for	SMA 2.9	2.5 million cycles	
Connectors		SMA - SMA 2.9	
Actuator terminals		HE10 ribbon receptacle	
Weight (Max)	g	230	

## ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (10 cycles)
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55 dB at 20GHz
Magnetic field	$<5.10-5$ gauss at 1 meter

High Performance Multiport Switches
PLATINUM Series / SPnT terminated up to 40 GHz

RF PERFORMANCES

Part number		R5943-34-7	$\begin{aligned} & \text { R5944-34-7 } \\ & \text { R5944-36-7 } \end{aligned}$	$\begin{aligned} & \text { R594F-34-7 } \\ & \text { R594F-36-7 } \end{aligned}$	$\begin{aligned} & \text { R } 5948-34-7 \\ & \text { R5948-36-7 } \end{aligned}$	
Frequency Range	GHz	DC to 6	DC to 20	DC to 26.5	DC to 40	
Impedance	$\Omega$	50				
Insertion Loss (Max)	dB	$0.3+0.015 \times$ frequency ( GHz )				
Isolation (Min)	dB	100	$\begin{array}{ll} \text { DC to } 6 \mathrm{GHz} & 100 \\ \text { 6 to } 12.4 \mathrm{GHz} & 90 \\ 12.4 \text { to } 20 \mathrm{GHz} & 80 \end{array}$	DC to 6 GHz 100   6 to 12.4 GHz 90   12.4 to 20 GHz 80   20 to 26.5 GHz 70	DC to 6 GHz   6 to 12.4 GHz   12.4 to 18 GHz   18 to 26.5 GHz   26.5 to 40 GHz	$\begin{array}{r} 100 \\ 90 \\ 80 \\ 70 \\ 60 \end{array}$
V.S.W.R. (Max)	dB	1.20	DC to 6 GHz 1.20   6 to 12.4 GHz 1.35   12.4 to 20 GHz 1.45	DC to 6 GHz 1.20   6 to 12.4 GHz 1.35   12.4 to 20 GHz 1.45   20 to 26.5 GHz 1.70	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 1.20 \\ & 1.35 \\ & 1.45 \\ & 1.70 \\ & 1.90 \end{aligned}$
Repeatability(measured at $25^{\circ} \mathrm{C}$ )			0.03 dB		0.05 dB	

## TYPICAL RF PERFORMANCES



SMA ——

## V.S.W.R.



## High Performance Multiport Switches

PLATINUM Series / SPnT terminated up to 40 GHz

## ELECTRONIC POSITION INDICATORS

## THIS OPTION IS NOT AVAILABLE WITH TYPE 4

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply ( 20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.
Indicator Common

High Performance Multiport Switches
PLATINUM Series / SPnT terminated up to 40 GHz

## DRIVING THE SWITCH

Each RF path is driven independently, and can be closed or open by applying ground to the corresponding "open" or "close" pin.

TYPE 4: WITHOUT TTL AND WITHOUT INDICATOR


Switch connector


Mating cable connector

## Standard drive:

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32VDC)
- Select desired RF path by applying
ground to the corresponding "close" pin
(Ex: ground pin 3 to close RF path 1)
- To open desired RF path connect ground to the corresponding "open" pin (Ex: ground pin 4 to open RF path 1)
- To open all RF paths, first ensure that all RF path "close" pins are disconnected from ground, then to complete the operation, connect pin 16 to ground


## Make-Before-Break:

Make-Before-Break switching can be accomplished by closing the new RF path before opening the previously selected RF path. To complete the operation, close the new the new RF port for at least 15 minutes (minimum), then open the previously selected RF port.

## TYPE 7: WITH TTL (OPTION "2") / WITHOUT TTL (OPTION "1") AND INDICATORS

Each RF path can be closed by applying Ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.


Switch connector


Mating cable connector

## Standard drive option " 1 ":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement), then apply ground to the "drive" pin which corresponds to the desired RF path
- TTo open all RF paths, ensure that all RF path "drive" pins are disconnected from ground, then complete the operation by applying ground to pin 16


## TTL drive option "2":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are in TTL "Low" position (to prevent multiple RF path engagement), then pply TTL "High" to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position, then to complete the operation by applying TTL "High" to pin 16


## Break-Before-Make:

Open the undesired RF path after 15 minutes (minimum), then close the new RF port.

## Make-Before-Break:

Ensure that the previously selected RF path "drive" is connected to ground (or TTL "High" for option "2"), then close the new RF path.

High Performance Multiport Switches

## TYPICAL OUTLINE DRAWING

SMA connectors


Ways 1 and 4 are not connected for SP4T switches.

High Performance Multiport Switches
PLATINUM Series / SPnT terminated up to 40 GHz

## POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- U.S.W.R.: 1 and cold switching



## DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1.


Optional Features For SPnT

## EXAMPLES OF DEDICATED APPLICATION OPTIONS



SPnT with flat ribbon cable for easy installation with limited space.


Thermal vacuum SPnT designed based on our expertise in Space. For more detailed information, see page 7-6 to 7-8.


Subminiature SP6T with a micro D connector instead of solder pins.

SPnT with special mounting bracket for easy mounting in Automatic Test Equipment.


Subminiature SP6T developed for test bench applications requiring low RF leakage.

Radiall $0^{\circ}$


## Contents

RAMSES Series
SPDT up to 18 GHz : R570xxxxxxLP Series 6-2 to 6-6
DPDT up to 18 GHz : R577xxxxxxLP Series 6-7 to 6-11
SPnT up to 18 GHz : R573xxxxxxLP Series. 6-12 to 6-16

## LOW PIM PART NUMBER SELECTION GUIDE*



Example of P/N: R573423600LP is a SP6T SMA 18 GHz, latching, 28 Vdc, without option, solder pins.
*For part number creation and available options, see detailed part number selection for each series.


To meet growing market demands created by the deployment of 4G/LTE networks, Radiall has introduced a new range of Low PIM switches. RAMSES SPDT Low PIM switches are perfectly suited for RF test systems and test benches requiring excellent passive intermodulation performance up to 18 GHz , with a guarantee PIM performance of $-160 \mathrm{dBc} @+43 \mathrm{dBm}$ over a life span of 2 million switching cycles.

These products are specific to instrumentation and telecommunication applications.
Example of P/N:
R570413030LP is a SPDT Low PIM SMA 18 GHz, failsafe, 28 Vdc , with supression diodes, solder pins.

## PART NUMBER SELECTION


I.C.: Indicator contact - S.C.O.: Self Cut-Off
(1): Suppression diodes are already included in Self Cut-OFF \& TTL option
(2): Positive common shall be specified only with type 2, 3, $5 \& 6$ because failsafe models can be used with both polarities
(3): Polarity is not relevant to application for switches with TTL driver
(4): Available only for N models

## SPDT Low PIM up to 18 GHz

GENERAL SPECIFICATIONS

Operating mode		Failsafe		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$
Coil resistance at $23^{\circ} \mathrm{C}(+/-10 \%)$	$\Omega$	47.5	275	58	350
Operating current at $23^{\circ} \mathrm{C}$	mA	250	102	210	80
Average power		See Power Rating Chart on page 1-13			
TTL input	High Level	2.2 to 5.5 Volts $\quad 800 \mu \mathrm{~A}$ max 5.5 V			
	Low Level	0 to 0.8 Volts $\quad 20 \mu \mathrm{~A}$ max 5.5 Volts			
Indicator rating		$1 \mathrm{~W} / 30 \mathrm{~V} / 100 \mathrm{~mA}$			
Switching time	ms	10			
Life (Min)		2 million cycles			
Connectors		SMA - N			
Operating temperature range		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, method 204D, cond.D)		$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$ operating		operating	
Shock (MIL STD 202, method 213B, cond.C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating			

## RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R.   (max)	Insertion loss (max) dB	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$	Third order intermodulation
N	DC-12.4	DC-1	1.15	0.15	85	50	-160 dBc a +43 dBm   (2 carriers 20W)
		1-2	1.20	0.20	80		
		2-3	1.25	0.25	75		
		3-8	1.35	0.35	70		
		8-12.4	1.50	0.50	60		
SMA	DC - 18	DC-3	1.10	0.15	80		
		3-8	1.20	0.20	75		
		8-12.4	1.20	0.25	65		
		12.4-18	1.40	0.35	60		

## OUTSTANDING PIM PERFORMANCE



Passive Intermodulation

Tone 1	1810 MHz , approximately 43 dBm
Tone 2	1850 MHz , approximately 43 dBm
3rd order PIM	160 dBc at 1770 MHz

Depending on application, carrier powers and frequencies, PIM measurements can vary. PIM testing is not measured during product acceptance test.

## TYPICAL RF PERFORMANCES

Example: SPDT N up to 12.4 GHz


Example: SPDT SMA up to 18 GHz
Insertion Loss and Isolation


## V.S.W.R.


V.S.W.R.


## TYPICAL OUTLINE DRAWING

Example: SPDT N up to 12.4 GHz with pins


Example: SPDT SMA up to 18 GHz


Example: SPDT N up to 12.4 GHz with D-sub



To meet growing market demands created by the deployment of 4G/LTE networks, Radiall has introduced a new range of Low PIM switches.RAMSES DPDT Low PIM switches are perfectly suited for RF test systems and test benches requiring excellent passive intermodulation performance up to 18 GHz , with a guarantee PIM performance of $-160 \mathrm{dBc} @+43 \mathrm{dBm}$ over a life span of 2 million switching cycles.
These products are specific to instrumentation and telecommunication applications.
Example of P/N:
R577163105LP is a DPDT Low PIM N 12.4 GHz latching with Indicators, Self Cut-Off, 28 Vdc, TTL driver, D-Sub connector.

## PART NUMBER SELECTION


I.C.: Indicator contact - S.C.O.: Self Cut-Off
(1): Suppression diodes are already included in Self Cut-OFF \& TTL option
(2): Positive common shall be specified only with type 2, 3, $5 \& 6$ because failsafe models can be used with both polarities
(3): Polarity is not relevant to application for switches with TTL driver

DPDT Low PIM up to 18 GHz

## GENERAL SPECIFICATIONS

Operating mode		Normally open		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$
Coil resistance at $23^{\circ} \mathrm{C}(+/-10 \%)$	$\Omega$	35	200	38	225
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	340	140	320	125
Average power		See Power Rating Chart on page 1-13			
TTL input	High Level	2.2 to 5.5 Volts $800 \mu \mathrm{~A}$ max 5.5 Volts			
	Low Level	0 to 0.8 Volts $\quad 20 \mu \mathrm{~A}$ max 0.8 Volts			
Switching time (Max)	ms	15			
Life (Min)		2 million cycles			
Connectors		SMA - N			
Actuator terminals		Solder pins or male 9 pin D-Sub connector			
Operating temperature range		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, method 204D, cond.C)		$10-2000 \mathrm{~Hz}, 10 \mathrm{~g}$ operating		operating	
Shock (MIL STD 202, method 213B, cond.G)		$50 \mathrm{~g} / 11 \mathrm{~ms}, 1 / 2$ sine operating			

## RF PERFORMANCES

Connectors	Frequency range GHz		V.S.W.R.   (max)	```Insertion loss (max) dB```	Isolation (min) dB	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$	Third order intermodulation
N	$\begin{gathered} D C-3 \\ D C-12.4 \end{gathered}$	DC-1	1.15	0.15	85	50	-160 dBc a +43 dBm   (2 carriers 20W)
		1-2	1.20	0.20	80		
		2-3	1.25	0.25	75		
		3-8	1.35	0.35	70		
		8-12.4	1.50	0.50	60		
SMA	$\begin{aligned} & D C-3 \\ & D C-18 \end{aligned}$	DC-3	1.20	0.20	80		
		3-8	1.30	0.30	70		
		8-12.4	1.40	0.40	65		
		12.4-18	1.50	0.50	60		

## OUTSTANDING PIM PERFORMANCE



## Passive Intermodulation

Tone 1	1810 MHz , approximately 43 dBm
Tone 2	1850 MHz , approximately 43 dBm
3rd order PIM	160 dBc at 1770 MHz

Depending on application, carrier powers and frequencies, PIM measurements can vary. PIM testing is not measured during product acceptance test.

DPDT Low PIM up to 18 GHz

## TYPICAL RF PERFORMANCES

Example: DPDT N up to 12.4 GHz
Insertion Loss and Isolation


Example: DPDT N up to 18 GHz
Insertion Loss and Isolation



## DPDT Low PIM up to 18 GHz

## TYPICAL OUTLINE DRAWING

Example: DPDT N up to 12.4 GHz with pins


Example: DPDT SMA up to 18 GHz with pins


Example: DPDT N up to 12.4 GHz with D-sub


Example: DPDT SMA up to 18 GHz with pins



To meet growing market demands created by the deployment of 4G/LTE networks, Radiall has introduced a new range of Low PIM switches. RAMSES SPnT Low PIM switches are perfectly suited for RF test systems and test benches requiring excellent passive intermodulation performance up to 18 GHz , with a guarantee PIM performance of $-160 \mathrm{dBc} @+43 \mathrm{dBm}$ over a life span of 2 million switching cycles.
These products are specific to instrumentation and telecommunication applications.
Example of P/N:
R573403600LP is a SP6T Low PIM SMA up to 18 GHz, Normally Open, 28 Vdc, without option and solder pins.

## PART NUMBER SELECTION


I.C.: Indicator contact
(1) Standard products are equiped with negative common
(2) Only for N models

SPnT Low PIM up to 18 GHz
GENERAL SPECIFICATIONS

Operating mode		Normally open		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 \text { to } 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 \text { to } 13 \text { ) } \end{gathered}$	$\begin{gathered} 28 \\ (24 \text { to } 30) \end{gathered}$
Coil resistance at $23^{\circ} \mathrm{C}(+/-10 \%)$	$\Omega$	47.5	275	38	225
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	250	102	$\begin{gathered} 320 \\ \text { Reset SP4T: } 1280 \mathrm{~mA}^{*} \\ \text { Reset SP6T: } 1920 \mathrm{~mA}^{*} \end{gathered}$	125 Reset SP4T: $500 \mathrm{~mA}^{*}$ Reset SP6T: $750 \mathrm{~mA}^{*}$
Average power		See Power Rating Chart on page 1-13			
TTL input	High Level	2.2 to 5.5 V ( TTL Option ) / 3.5 to 5.5 V ( BCD Option )			
	Low Level	0 to 0.8 V ( TTL Option )/ 0 to 1.5 V ( BCD Option )			
Indicator rating		1 Watt / $30 \mathrm{~V} / 100 \mathrm{~mA}$			
Switching time (Max)	ms	15			
Life (Min)		2 million cycles			
Connectors		SMA - N			
Actuator terminals		Solder pins or male 25 pin D-Sub connector			
Operating temperature range		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Vibration (MIL STD 202, method 204D, cond.D)		$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$ operating for SP3 to 6T			
Shock (MIL STD 202, method 213B, cond.C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating for SP3 to 6T			

*Reset: supply voltage time 1 sec . max./duty cycle 10\%

## RF PERFORMANCES

Connectors	Number of positions	Frequency range GHz		V.S.W.R.   (max)	```Insertion loss (max) dB```	$\begin{aligned} & \text { Isolation (min) } \\ & d B \end{aligned}$	$\begin{gathered} \text { Impedance } \\ \Omega \end{gathered}$	Third order intermodulation
SMA	4 and 6	DC-18	DC - 3	1.20	0.20	80	50	$\begin{gathered} -160 \mathrm{dBc} \mathrm{Q}+43 \mathrm{dBm} \\ (2 \text { carriers } 20 \mathrm{~W}) \end{gathered}$
			3-8	1.30	0.30	70		
			8-12.4	1.40	0.40	60		
			12.4-18	1.50	0.50	60		
N		DC-12.4	DC-3	1.20	0.20	80		
			3-8	1.35	0.35	70		
			8-12.4	1.50	0.50	60		

## OUTSTANDING PIM PERFORMANCE



## Passive Intermodulation

Tone 1	1810 MHz , approximately 43 dBm
Tone 2	1850 MHz , approximately 43 dBm
3rd order PIM	160 dBc at 1770 MHz

Depending on application, carrier powers and frequencies, PIM measurements can vary. PIM testing is not measured during product acceptance test.

## SPnt Low PIM up to 18 GHz

## TYPICAL RF PERFORMANCES

Example: SP6T N up to 12.4 GHz
Insertion Loss and Isolation


Example: SP6T SMA up to 18 GHz
Insertion Loss and Isolation


## V.S.W.R.



## V.S.W.R.



SPnt Low PIM up to 18 GHz

## TYPICAL OUTLINE DRAWING

Example: SPnT N up to 12.4 GHz


## RF CONNECTORS ALLOCATION

SP4T



Example: SPnT SMA up to 18 GHz


SP6T


Coaxial Low PIM switches - Electrical schematics

Type		Failsafe   Without option	Latching		
Options			Without option	Cut-off	$\mathrm{C}+$ and suppression diodes
		Indicator contact	Indicator contact	Cut-off and I.C.	C+, suppression diodes and I.C.
		Suppression diodes	Suppression diodes	Cut-off and TTL Driver	C+ and cut-off
		Suppression diodes and I.C.	Suppression diodes and I.C.	Cut-off, TTL and I.C.	C+, cut-off and I.C.
		TTL Driver	TTL Driver	C+	
		TTL Driver and I.C.	TTL Driver and I.C.	C+ and I.C.	
Page   Number	SPDT	see page 2-24	see page 2-25	see page 2-26	see page 2-27
	DPDT	see page 4-10	see page 4-11	see page 4-12	see page 4-13


Type		Normally open		Latching		
Options		Without option	C+	Without option	C+	C+ and suppression diodes
		Indicator contact	C+ and I.C.	Indicator contact	C+ and I.C.	C+, suppression diodes and I.C.
		Suppression diodes	$\mathrm{C}+$ and suppression diodes	Suppression diodes		
		Suppression diodes and I.C.	C+, suppression diodes and I.C.	Suppression diodes and I.C.		
Page   Number	SPnT	see page 5-32	see page 5-33	see page 5-34	see page 5-35	see page 5-36

Radiall ${ }^{2}$

Space
ContentsGeneral Information7-2
Radiall Specifications ..... 7-3
Flight Models
Low power models ..... 7-6 to 7-11
High power models ..... 7-12 to 7-17
Thermal Vacuum for Ground Segments ..... 7-18 to 7-20

## GENERAL INFORMATION/SPECIFICATIONS

Radiall Hi-Rel switches are manufactured based on over 40 years of experience and thousands of products that have been designed, qualified, and delivered for both commercial and military applications. With a space heritage of over 25 years and products in flight on over 250 satellites around the world, Radiall guarantees the highest level of manufacturing, quality and reliability.

Radiall Hi-Rel coaxial switches have been fully evaluated and approved by the European Space Agency for Space use according to the generic specification ESCC3603. Radiall offers products tested at several levels based on the same hardware including:

- EM: Engineering Model
- QM: Qualification Model
- PFM: Proto Flight Model

Radiall also provides a full range of low cost Hi-Rel switches for space applications. These products, meet the requirements for communication satellite applications according to RAD-GEN-SWIT-001 and follow detailedspecifications according to the Radiall part number list (see page 6-3).

ENVIRONMENTAL CHARACTERISTICS

		Qualification level
Operation temperature range		$-30^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$
Non operation temperature range	$-40^{\circ} \mathrm{C} /+85^{\circ} \mathrm{C}$	
Sinus	Random	$5-100 \mathrm{~Hz} / 20 \mathrm{~g}$
		$20-2000 \mathrm{~Hz} / 28.57 \mathrm{grms}$
		$1 / 2$ sinus $/ 1200 \mathrm{~g} / 0.25 \mathrm{~ms}$
Pressure		Free space vacuum



## Radiall Specifications

## RADIALL BEST RUNNERS PART LIST (FM P/N):

Detail specification	Product	Power cap.	Connectors	Radiall P/N FM	Designation
RAD - DET - SPDT - 001	SPDT	Low power	SMA	R571 492601	Fixing plate with pins
				R571 472601	Lay Down with pins
				R571 471601	Lay Down with D-sub
			SMA 2.9	R571 892601	Fixing plate with pins
				R571 872601	Lay Down with pins
				R571 871601	Lay Down with D-sub
RAD - DET - SPDT - 002	SPDT	High power	TNC	R565 271601	Lay Down with D-sub, High Cavity
				R565 371601	Lay Down with D-sub, Standard Cavity
RAD - DET - DPDT-006	DPDT	Low power	SMA	R578 483601	Stand Up with D-sub
				R578 472601	Lay Down with D-sub
				R578 482601	Stand Up with pins
			SMA 2.9	R578 872601	Lay Down with pins
				R578 883601	Stand Up with D-sub
				R578 882601	Stand Up with pins
RAD - DET - TSSD-002	T-Switch Sequentiel	Low power	SMA	R587 432601	Lay Down with pins
				R587 443601	Stand up with D-sub
				R587 442601	Stand up with pins
			SMA 2.9	R587 832621	Lay Down with pins
				R587 842621	Stand up with pins
				R587 843621	Stand up with D-sub
RAD - DET - TRSD - 002	T-Switch	High power	TNC	R588 371601	Lay Down with D-sub
				R588 381611	Stand up with D-sub
RAD - DET - TRSD-003	T-Switch Random	Low power	SMA	R587 492601	Fixing plate with pins
				R587 472601	Lay Down with pins
				R587 482601	Stand up with pins
			SMA 2.9	R587 872601	Lay Down with pins
				R587 882601	Stand up with pins
				R587 883601	Stand up with D-sub
RAD - DET - DP3T-001	DP3T	Low power	SMA	R586 471601	Lay Down with D-sub
			SMA 2.9	R586 871601	Lay Down with D-sub
RAD - DET - DP3T-002	DP3T	High power	TNC	R564 271601	Lay Down with D-sub, High Cavity
				R564 371601	Lay Down with D-sub, Standard Cavity
				R564 372601	Lay Down with pins, Standard Cavity

Low Power Coaxial SPDT Switch

LOW-POWER LATCHING COAXIAL SPDT SWITCH according to Radiall specification RAD-DET-SPDT-001

- DC to 22 GHz with SMA connectors
- Up to 31 GHz with SMA 2.9 connectors
- Telemetry circuit
- Suppression diodes
- D-Sub or solder pins
- Lay Down or Fixing plate
- 44 grams and up

GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+22	+26	+29
Pick-Up Voltage	V			+20.5
Actuation Current $\begin{aligned} & \mathrm{a}+29 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},-30^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},+85^{\circ} \mathrm{C} \end{aligned}$	mA		$\begin{aligned} & 129 \\ & 164 \\ & 105 \end{aligned}$	$\begin{aligned} & 139 \\ & 176 \\ & 113 \end{aligned}$
Switching Time	ms			20
Pulse Duration	ms	20		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	210	225	
RF Contact Resistance	$\mathrm{m} \Omega$			100
$\mathrm{m} \Omega$				
			1000	
	10			
			100	
Coil Isolation at 500 VDC	M	10		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass   Variant 001: SPDT, Fixing Plate, Pins Variant 002: SPDT, Lay Down, Pins Variant 003: SPDT, Lay Down, D-Sub	grams			44 62 72

## RF PERFORMANCES

## DC to 22 GHz SMA

Frequency	GHz	$\mathrm{DC}-4.2$	$4.2-10.7$	$10.7-12.75$	$12.75-14.5$	$14.5-22$
Insertion Loss (max)	dB	0.12	0.20	0.25	0.30	
VSWR (max)	$(\mathrm{dB})$	$1.20: 1$	$1.20: 1$	$1.20: 1$	$1.25: 1$	
Return Loss (min)	dB	$(21)$	$(21)$	1.35		
Isolation (min)	dBi	75	70	$(19)$	$(17)$	
E-Field Shielding   Effectiveness (min)		70	70	65		

Ka - band SMA 2.9

Frequency	GHz	$17.5-21.5$	$21.5-27.5$	$27.5-31$
Insertion Loss (max)	dB	0.45	0.45	0.50
VSWR (max)	(dB)	$1.33: 1$	$1.35: 1$	$1.40: 1$
Return Loss (min)	dB	$(17.0)$	$(16.5)$	$(15.6)$
Isolation (min)	dBi	65	60	60
E-Field Shielding	W	70	60	60
Effectiveness (min)		10		5
Power Handling (max)				

## POWER DERATING GRAPH

Variant 001 to 003: DC to 22 GHz SMA


LOW-POWER LATCHING COAXIAL DPDT SWITCH according to Radiall specification

## RAD-DET-DPDT-006

- DC to 22 GHz with SMA connectors
- Up to 31 GHz with SMA 2.9 connectors
- Telemetry circuit
- Suppression diodes
- D-Sub or solder pins
- Lay Down or Stand up
- 57 grams and up


## GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+22	+26	+29
Pick-Up Voltage	V			+20.5
Actuation Current				
a $+29 \mathrm{~V},+25^{\circ} \mathrm{C}$			129	139
a $+29 \mathrm{~V},-30^{\circ} \mathrm{C}$	mA		164	176
a $+29 \mathrm{~V},+85^{\circ} \mathrm{C}$			105	113
Switching Time	ms			25
Pulse Duration	ms	20		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	210	225	
RF Contact Resistance	$\mathrm{m} \Omega$			100
TLM Indicator Circuit				
Contact Closed	$\mathrm{m} \Omega$			1000
Contact Open	M $\Omega$	10		
Contact Current	mA			100
Coil Isolation at 500 VDC	M $\Omega$	10		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass   Variant 001-005: C-Switch Stand up D-Sub Variant 002-004: C-Switch Lay Down Pins Variant 003-006: C-Switch Stand up Pins	grams			80 57 60

## RF PERFORMANCES

DC to 22 GHz SMA

Frequency	GHz	DC-4.2	4.2-8.4	8.4-14.5	14.5-18	18-20	20-22
Insertion Loss (max)	dB	0.15	0.25	0.30	0.40	0.50	0.50
VSWR (max)		1.20:1	1.25:1	1.25:1	1.33:1	1.33:1	1.40:1
Return Loss (min)		(21)	(19)	(19)	(17)	(17)	(15:6)
Isolation (min)	dB	70			65		
E-Field Shielding   Effectiveness (min)	dBi	75	70	68	65	60	60

## KA - BAND SMA2.9

Frequency	GHz	$17.5-21.5$	$27.5-31$
Insertion Loss (max)	dB	0.50	0.65
VSWR (max)	(dB)	$1.33: 1$	$1.40: 1$
Return Loss (min)	dB	$(17.7)$	$(15.6)$
Isolation (min)	dBi	65	60
E-Field Shielding   Effectiveness (min)	W	60	60
Power Handling (max)		10	5

## SCHEMATICS \& DRAWINGS

C-Switch, SMA ,Lay Down pins:


## POWER DERATING GRAPH




C-Switch, SMA, Stand Up, D-Sub

Frequency   $(\mathbf{G H z})$	Ereakdown   Power   Handling (W)	Breakdown   Multipaction   Power (W)
0.3	292.1	15.2
2.3	105.5	15.2
2.4	103.3	155.2
2.5	101.2	15.2
2.6	99.2	17.8
2.7	97.4	20.7
2.8	95.6	23.9
2.9	94.0	27.5
3.0	92.4	31.5
4.0	80.0	101.6
5.0	71.6	158.8
6.0	65.3	228.6
7.0	60.5	311.2
8.0	56.6	406.4
9.0	53.3	514.4
10.0	50.6	635.0
12.0	46.2	914.5
14.0	42.8	1244.7
16.0	40.0	1625.7
18.0	37.7	2057.5
20.0	35.8	2540.2
22.0	34.1	3073.6

LOW-POWER LATCHING COAXIAL T SWITCH according to Radiall specification RAD-DET-TSSD-002 and RAD-DET-TSRD-003

- Random or Sequential drive
- Suppression diodes
- DC to 22 GHz with SMA connectors
- Up to 31 GHz with SMA 2.9 connectors
- D-Sub or solder pins
- Stand up or Lay Down or fixing plate
- Telemetry circuit
- 58 grams and up

GENERAL SPECIFICATIONS

		RAD-DET-TSSD-002 Sequential Drive			RAD-DET-TSRD-003 Random Drive		
	Unit	Min	Typical	Max	Min	Typical	Max
Actuation Voltage	V	+22	+26	+29	+22	+26	+29
Pick-Up Voltage	V			+20.5			+20.5
Actuation Current							
a $+29 \mathrm{~V},+25^{\circ} \mathrm{C}$			345	364		285	305
$\mathrm{a}+29 \mathrm{~V},-30^{\circ} \mathrm{C}$	mA		439	462		365	$390$
Q $+29 \mathrm{~V},+85^{\circ} \mathrm{C}$			280	295		234	250
Switching Time	ms			25			20
Pulse Duration	ms	20		1000	20		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	79.8	84		88	95	
RF Contact Resistance	$\mathrm{m} \Omega$			100			100
TLM Indicator Circuit							
Contact closed	$\mathrm{m} \Omega$			1000			1000
Contact Open	$\mathrm{m} \Omega$	10			10		
Contact Current	mA			100			100
Coil Isolation at 500 VDC	M $\Omega$	10			10		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500			500		
Mass							
T-Switch, Lay Down Pins				73			64
T-Switch, Stand Up D-Sub	grams			100			-
T-Switch, Stand Up Pins				75			75
				-			
Torque Screws for							
Fixing unit	N.m			2.0			2.0
For DC connector	N.m			0.44			N/A
For SMA connector		0.8	1.1	1.15	0.8	1.1	1.15

## RF PERFORMANCES

## DC to 22 GHz SMA

Frequency	GHz	DC-4.2	4.2-5.5	5.5-6.6	6.6-7.7	7.7-8.8	8.8-10.5	10.5-14.5	14.5-17.8	17.8-20	20-22
Insertion Loss (max)	dB	0.15	0.17	0.18	0.21	0.24	0.30	0.35	0.45	0.50	0.50
VSWR (max)   Return Loss (min)	(dB)	$\begin{gathered} 1.20: 1 \\ (21) \end{gathered}$	$\begin{gathered} 1.22: 1 \\ (20) \end{gathered}$	$\begin{gathered} 1.25: 1 \\ (19) \end{gathered}$	$\begin{gathered} 1.33: 1 \\ (17) \end{gathered}$	$\begin{gathered} 1.33: 1 \\ (17) \end{gathered}$	$\begin{aligned} & 1.40: 1 \\ & (15.6) \end{aligned}$				
Isolation (min)	dB	70						65			
E-Field Shielding   Effectiveness (min)	dBi	75			70			65			

KA - BAND SMA2.9

Frequency	GHz	$17.5-21.5$	$27.5-31$
Insertion Loss (max)	dB	0.50	0.65
VSWR (max)	(dB)	$1.33: 1$	$1.40: 1$
Return Loss (min)	dB	$(17)$	65
Isolation (min)	dBi	60	60
E-Field Shielding	W	10	5
Effectiveness (min)			60

## SCHEMATICS \& DRAWINGS

## Sequential Drive:

## Random Drive:




T-Switch, Lay Down with pins:


T-Switch, Stand Up with D-Sub:


T-Switch, Fixing plate with pins:

## POWER DERATING GRAPH

Variant 001 to 003: DC to 22 GHz SMA



LOW-POWER LATCHING COAXIAL DP3T SWITCH according to Radiall specification RAD-DET-DP3T-001

- DC to 22 GHz with SMA connectors
- DC to 31 GHz with SMA 2.9 connectors
- Telemetry circuit
- Suppression diodes
- D-Sub
- Lay Down
- 106 grams


## GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+22	+26	+29
Pick-Up Voltage	V			+20.5
Actuation Current $\begin{aligned} & \mathrm{a}+29 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},-30^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},+85^{\circ} \mathrm{C} \end{aligned}$	mA		$\begin{aligned} & 129 \\ & 164 \\ & 105 \end{aligned}$	$\begin{aligned} & 139 \\ & 176 \\ & 113 \end{aligned}$
Switching Time	ms			20
Pulse Duration	ms	20		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	210	225	
RF Contact Resistance	$\mathrm{m} \Omega$			100
TLM Indicator Circuit				
Contact closed	$\mathrm{m} \Omega$			1000
Contact Open	M $\Omega$	10		
Contact Current	mA			100
Coil Isolation at 500 VDC	M $\Omega$	10		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass	grams			106
Torque Screws for   Fixing unit   For DC connector   For SMA connector	N.m	$\begin{gathered} 0.27 \\ 0.8 \end{gathered}$	1.1	$\begin{gathered} 2.0 \\ 0.44 \\ 1.15 \\ \hline \end{gathered}$

## RF PERFORMANCES

Frequency	GHz	DC-4.2	4.2-10.7	10.7-12.75	12.75-14.5	14.5-22
Insertion Loss (max)	dB	0.15	0.15	0.25	0.30	0.40
VSWR (max)		1.15:1	1.20:1	1.25:1	1.25:1	1.40:1
Return Loss (min)	(dB)	(23.1)	(20.8)	(19.1)	(19.1)	(15.6)
Isolation (min)	dB	70			60	
E-Field Shielding Effectiveness (min)	dBi	75			70	

KA - BAND SMA2.9

Frequency	GHz	$17.5-21.5$	$21.5-27.5$	$27.5-31$	
Insertion Loss (max)	dB	0.50	0.45	0.65	
VSWR (max)   Return Loss (min)	$(\mathrm{dB})$	$1.33: 1$	$1.35: 1$	$1.40: 1$	
Isolation (min)	dB	$(17)$	$(16.5)$	$(15.6)$	
E-Field Shielding	dBi	65	60		
Effectiveness (min)	W	60	50		
Power Handling (max)		10		5	

## SCHEMATICS \& DRAWINGS



## POWER DERATING GRAPH

Variant 001 to 003: DC to 22 GHz SMA


High Power Coaxial SPDT Switch


HIGH-POWER LATCHING COAXIAL SPDT SWITCH according to Radiall specification RAD-DET-SPDT-002
-TNC connectors • Telemetry circuit

- Up to 2.2 GHz, with 160 Watts CW • Suppression diodes
- Up to 4.8 GHz , with 150 Watts CW •D-Sub

Down

- 275 grams


## GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+20	+26	+30
Pick-Up Voltage	V			+19
Actuation Current $\begin{aligned} & \mathrm{a}+29 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},-30^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},+85^{\circ} \mathrm{C} \end{aligned}$	mA	$\begin{aligned} & 178 \\ & 227 \\ & 145 \end{aligned}$	$\begin{aligned} & 188 \\ & 239 \\ & 153 \end{aligned}$	$\begin{aligned} & 198 \\ & 251 \\ & 161 \end{aligned}$
Switching Time	ms		25	35
Pulse Duration	ms	50		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	152	160	168
RF Contact Resistance	$\mathrm{m} \Omega$			100
TLM Indicator Circuit				
Contact closed	$\mathrm{m} \Omega$			1000
Contact Open	M $\Omega$	2		
Contact Current	mA			100
Coil Isolation at 500 VDC	M $\Omega$	1		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass variant 001 \& 002	grams			275
Torque Screws for   Fixing unit   For DC connector   For SMA connector	N.m			$\begin{gathered} 2.0 \\ 0.2 \\ 2.65 \end{gathered}$

## RF PERFORMANCES

		DC-2.2 GHz Variant 001			DC-4.8 GHz Variant 002			
Frequency	GHz	0.04-1.0	1.0-1.6	1.6-2.2	0.04-1.0	1.0-1.6	1.6-2.2	2.2-4.8
Insertion Loss (max)	dB	0.12			0.12			0.22
VSWR (max)	(dB)	1.20:1			1.20:1			1.38:1
Return Loss (min)		(20.8)			(20.8)			(15.9)
Isolation (min)	dB	70			70			
E-Field Shielding   Effectiveness (min)	dBi	70			70			60
Power Handling (max)	W	33 亿 1 GHz	85 @ 1.6GHz	160 ® 2.2 GHz	5 @ 1 GHz	29 @ 1.6GHz	55 a 2.2 GHz	102 a 3 GHz

High Power Coaxial SPDT Switch

## SCHEMATICS \& DRAWINGS



SPDT Switch, Lay Down, D-Sub, variant 001 \& 002:


Position 1 : J 1 - J2
Position 2 : J2 - J3

## POWER DERATING GRAPH

Variant 001, High Cavity



Variant 002, Standard Cavity
Power derating versus frequency



High Power Coaxial DP3T Switch


HIGH-POWER LATCHING COAXIAL DP3T SWITCH according to Radiall specification RAD-DET-DP3T-002

- TNC connectors	- Suppression diodes
- Up to 2.2 GHz , with 160 Watts CW	- D-Sub or pins
- Up to 4.8 GHz , with 150 Watts CW	- Lay Down
- Telemetry circuit	- 390 grams and up

GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+20	+26	+30
Pick-Up Voltage	V			+19
Actuation Current $\begin{aligned} & \mathrm{a}+29 \mathrm{~V},+25^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},-30^{\circ} \mathrm{C} \\ & \mathrm{a}+29 \mathrm{~V},+85^{\circ} \mathrm{C} \end{aligned}$	mA	$\begin{aligned} & 178 \\ & 227 \\ & 145 \end{aligned}$	$\begin{aligned} & 188 \\ & 239 \\ & 153 \end{aligned}$	$\begin{aligned} & 198 \\ & 251 \\ & 161 \end{aligned}$
Switching Time	ms		25	35
Pulse Duration	ms	50		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	152	160	168
RF Contact Resistance	$\mathrm{m} \Omega$			100
TLM Indicator Circuit				
Contact closed	$\mathrm{m} \Omega$			1000
Contact Open	M $\Omega$	2		
Contact Current	mA			100
Coil Isolation at 500 VDC	M $\Omega$	1		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass   Variant 001: Lay Down D-Sub   Variant 002: Lay Down D-Sub   Variant 003: Lay Down pins	grams			$\begin{aligned} & 460 \\ & 445 \\ & 390 \end{aligned}$
Torque Screws for   Fixing unit   For DC connector   For SMA connector	N.m			$\begin{gathered} 2.0 \\ 0.2 \\ 2.65 \end{gathered}$

## RF PERFORMANCES

		DC-2.2 GHz Variant 001			DC - 4.8 GHz Variant 002 and 003			
Frequency	GHz	0.04-1.0	1.0-1.6	1.6-2.2	0.04-1.0	1.0-1.6	1.6-2.2	2.2-4.8
Insertion Loss (max)	dB	0.12			0.12			0.22
VSWR (max)	(dB)	1.20:1			1.20:1			1.38:1
Return Loss (min)		(20.8)			(20.8)			(15.9)
Isolation (min)	dB	70			70			
E-Field Shielding   Effectiveness (min)	dBi	70			70			60
Power Handling (max)	W	33 ® 1 GHz	85 व 1.6GHz	160 a 2.2 GHz	5 @ 1 GHz	29 a 1.6GHz	55 d 2.2 GHz	102 al 3 GHz

High Power Coaxial DP3T Switch
SCHEMATICS \& DRAWINGS


DP3T Switch, Lay Down, Pins:


Variant 1, High Cavity
Power derating versus frequency



Frequency (GHz)
Variant 002, Standard Cavity
Power derating versus frequency



High Power Coaxial T Switch


HIGH-POWER LATCHING COAXIAL T SWITCH according to Radiall specification RAD-DET-TSRD-002

- TNC connectors • Suppression diodes
- DC to 8 GHz
- D-Sub or solder pins
- Up to 120 Watts CW @ 4 GHz
- Lay Down or Stand up
- Random Drive
- 355 grams and up
- Telemetry circuit

GENERAL SPECIFICATIONS

	Unit	Min	Typical	Max
Actuation Voltage	V	+22	+26	+29
Pick-Up Voltage	V			+20.5
Actuation Current				
a $+29 \mathrm{~V},+25^{\circ} \mathrm{C}$		450	470	490
$\mathrm{a}+29 \mathrm{~V},-25^{\circ} \mathrm{C}$		555	585	610
a $+29 \mathrm{~V},-30^{\circ} \mathrm{C}$	mA	570	595	620
a $+29 \mathrm{~V},+80^{\circ} \mathrm{C}$		360	385	405
a $+29 \mathrm{~V},-85^{\circ} \mathrm{C}$		365	380	397
Switching Time	ms			35
Pulse Duration	ms	35		1000
Coil Resistance (at $+25^{\circ} \mathrm{C}$ )	$\Omega$	59.3	61.8	64.4
RF Contact Resistance	$\mathrm{m} \Omega$			100
TLM Indicator Circuit				
Contact closed	$\mathrm{m} \Omega$			1000
Contact Open	M $\Omega$	1		
Contact Current	mA			100
Coil Isolation at 500 VDC	M	1		
Dielectric Withstanding at 50 or 60 Hz	Vrms	500		
Mass   T-Switch, Lay Down, D-Sub   T-Switch, Stand Up, D-Sub	grams			$\begin{aligned} & 360 \\ & 355 \end{aligned}$
Torque Screws for   Fixing unit   For DC connector   For SMA connector	N.m			$\begin{gathered} 2.0 \\ 0.44 \\ 2.65 \end{gathered}$

## RF PERFORMANCES

DC - 8 GHz Variants 001 \& 002

Frequency	GHz	DC-2	2-4.8	4.8-6	6-8
Insertion Loss (max)	dB	0.17	0.20	0.30	0.40
VSWR (max)		1.10:1	1.25:1	1.35:1	1.50:1
Return Loss (min)		(26.4)	(19.1)	(16.5)	(14)
Isolation (min)	dB	70			
E-Field Shielding Effectiveness (min)	dBi		75		70

High Power Coaxial T Switch

## SCHEMATICS \& DRAWINGS

T-Switch, TNC, D-Sub, variant 001 \& 002:


T-Switch, Lay Down, D-Sub, variant 001:


T-Switch, Stand Up, D-Sub, variant 002:


## POWER DERATING GRAPH



Frequency (GHz)


With more than 25 years of experience in the space industry, Radiall has developed a product offering that emphasizes reliability and performance. The latest addition to the range includes SPDT, DPDT and SPnT RF switches designed to operate in thermal vacuum environments. These products can be mounted on ground based test benches, used in test equipment, and space vacuum conditions.

Tvac Series switches are designed in accordance with our standard RAMSES product offering and offer identical configurations with excellent performance.

## PART NUMBER SELECTION

6 standard models are available for test benches dedicated to space equipment in Thermal Vacuum environment:

- 22 GHz SPDT coaxial switch: R571 F63 121
- 22 GHz DPDT coaxial switch: R578 F63 121
- 22 GHz non terminated SP6T coaxial switch: R583 F33 121
- 40 GHz SPDT coaxial switch: R571 863121
- 40 GHz DPDT coaxial switch: R578 863121
- 40 GHz non terminated SP6T coaxial switch: R583 833121

Operating mode	Latching	
Nominal operating voltage   lacross operating temperature)	Vdc	
Coil resistance ( $+/-10 \%$ )	$\Omega$	28 (24/30)
Nominal operating current at 23		

(1) connector SMA 2.9 is equivalent to "K connector $®$ ", registered trademark of Anritsu.

## Thermal Vacuum Switches

## ADDITIONAL SPECIFICATION

Polarity		Positive Common
Actuator terminals	SPDT	Solder Pins
	DPDT	Male 9 pins D-Sub connector
		Male 25 pins D-Sub connector
Construction		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

## SMA CONNECTOR

Switch model	Frequency range GHz		V.S.W.R.   (max)	$\begin{aligned} & \text { Insertion loss (max) } \\ & \mathrm{dB} \end{aligned}$	Isolation (min) dB	Impedance $\Omega$	Average power(1) W	Repeatability
SPDT	DC-22	DC-3	1.20	0.20	80	50	240	0.03 dB peak change in Insertion Loss over 100 cycles
		3-8	1.30	0.30	70		150	
		8-12.4	1.40	0.40	60		120	
		12.4-18	1.50	0.50	60		100	
		18-22	1.70	0.70	55		40	
		DC-3	1.20	0.20	80		240	
DPDT		3-8	1.30	0.30	70		150	
SP6T	DC-22	8-12.4	1.40	0.40	60	50	120	
(non terminated)		12.4-18	1.50	0.50	60		100	
		18-22	1.70	0.70	50		40	

## SMA2.9 CONNECTOR

Switch model	Frequency range GHz		V.S.W.R.   (max)	Insertion loss (max) dB	Isolation (min) dB	Impedance   $\Omega$	Average power (1) W	Repeatability
SPDT DPDT	DC-40	DC-6	1.30	0.30	70	50	80	0.03 dB peak change in Insertion Loss over 100 cycles
		6-12.4	1.40	0.40	60		60	
		12.4-18	1.50	0.50	60		50	
		18-26.5	1.70	0.70	55		20	
		26.5-40	1.90	0.90	50		10	
SP6T   (non terminated)	DC-40	DC-6	1.30	0.30	70	50	40	
		6-12.4	1.40	0.40	60		30	
		12.4-18	1.50	0.50	60		25	
		18-26.5	1.70	0.70	55		15	
		26.5-40	1.90	0.90	50		5	

(1): Average power at $25^{\circ} \mathrm{C}$ per RF path / Sea level.

## WHY A THERMAL VACUUM TEST BENCH ?

- It limits the need of hermetic adaptors and cable assemblies
- It improves RF performance
- It decreases the complexity of the Test bench


SPDT and DPDT products

- Power Handling
- Multipactor
- Aver. Power Capability

SPDT, DPDT and SP6T products

- Power Handling
- Multipactor
- Aver. Power Capability


## HERMETIC FEMALE / FEMALE ADAPTATORS

- SMA DC - 18 GHz
- TNC DC -11 GHz
- ESA qualified
- High reliability



Radiall $0^{\circ}$


Other
Contents
Other Components
RF \& Microwave coaxial products ..... 8-2 to 8-3
TestPro cable assemblies ..... 8-4
Space qualified products ..... 8-5 to 8-6
Switch applications ..... 8-7 to 8-8

## RF \& Microwave Products

## GENERAL INFORMATION

Specialized in passive RF \& Microwave components, Radiall's engineering staff develops and manufactures a wide range of other coaxial standard devices including terminations, attenuators, coaxial couplers, detectors, rotary joints, filters, and phase shifters. This range covers a wide frequency spectrum from DC to 50 GHz for telecom, aerospace, instrumentation and military application.
Radiall introduced TestPro cables assemblies into the market for test and measurement applications, in order to meet customers needs.
For Space applications, Radiall also offers a full range of space components built according to ESA specifications including attenuators, terminations, couplers, connectors, coaxial cable assemblies (flexible or semi-rigid cables) for L, S, C, X, Ku and Ka band applications.


## TERMINATIONS

Radiall's range of terminations is intended to terminate a coaxial transmission through characteristic impedance and dissipating the RF incident power. The main features of our full range of terminations include:

- Power range from 0.5W to 1000 W
- Frequency from DC up to 50 GHz
- $50 \Omega$ Impedance
- High repeatability
- Compatibility with Broad type connections: BMA, BNC, QMA, QN, N, SMA, SMA2.9, SMB, SMP, SSMA, TNC, 1.0/2.3, 7/16, 2.4 mm
- Connector interface according to applicable MIL, DIN, NF and CEI
- Dedicated range for test \& measurement with the lowest USWR



## ATTENUATORS

Attenuators are linear passive transition line components designed to be inserted between two coaxial lines to reduce the input power in a matched system by a predetermined ratio. This ratio is expressed in logarithmic terms. 3 dB as a power ratio is $2,6 \mathrm{~dB}$ is $4,20 \mathrm{~dB}$ is 100 , and 30 dB is 1000 . The main features of our full range of coaxial attenuators include:

- Power range from 1W to 100W
- Frequency from DC up to 40 GHz
- High repeatability
- $50 \Omega$ Impedance
- Compatibility with Broad type connections :

BNC, QN, N, SMA, SMA 2.9, SMB, TNC, 7/16


Connector interface according to applicable MIL, DIN, NF and CEI

- Dedicated range for test \& measurement with the lowest VSWR


## RF \& Microwave Products

## COAXIAL COUPLERS

Radiall's coaxial couplers offer a reliable design to meet the needs of microwave applications. The main features of our full range of coaxial couplers include:

- Directional \& 3dB Hybrid $90^{\circ}$ couplers
- Power range from 50 to 500 Watts
- Frequency from 0.15 GHz to 8 GHz
$-6,10,20 \& 30 d B$ coupling factors
- SMA, Type N offered, TNC 7/16
- Dedicated range providing flat frequency response

- Possibility to design custom coaxial couplers as per customer requirements


## SPECIAL MICROWAVE COMPONENTS

Radiall offers a complete range of special Microwave components suitable for applications utilizing the following devices:

- Feedthrough terminations
- Detectors
- Rotary joints
- DC Blocks
- Monitor tees
- Signal samplers



## Feed through terminations

These components are used to properly terminate a transmission line while testing with a high impedance measuring system such as an oscilloscope input.

## Detectors

A detector is a 2 port device capable of supplying a low frequency signal on its output port (video), of a level proportional to the RF power applied to its input port.

## Rotary joints

These components provide the transition between 2 coaxial transmission lines that rotate while maintaining necessary RF characteristics.

## DC blocks

DC blocks are composed of a capacitor inserted to the central conductor of the coaxial line. They block any DC or low frequency current present in the line.

## Signal samplers

These devices are used to sample part of an RF signal from a coaxial line. They are not directive, and the sample incident reflects energy.

## Phase shifters

These components create a mechanical adjustable phase shift by variation in the physical length of the transmission line.

## TestPro Cable Assemblies



TestPro cables are dedicated to bench test cable assemblies. Our TestPro range differs from the SHF range, because the cables and connectors are designed for high performance and testing and measurement.
While others propose cosmetic solutions to appear more robust without any real performance advantages, Radiall's design offers a full range of test bench cables that performs better than any other product on the market.
Test cable assemblies are intended for daily use in component and assembly shops, test labs and automatic test equipment applications. They differ from standard cable assemblies in that they are specifically designed for applications that require repeated connect/disconnect procedures, strenuous flexing situations and applications where cable and connector durability is important.

Key characteristics of the Testpro range include:

- Rugged interface: 5,000 mating/unmating lifecycle
- Flex life: over 20,000 cycles
- High flexibility
- Outstanding phase and loss stability for long calibration intervals

	TestPro 4.2	TestPro 3	TestPo 2 (launch 2014)
Frequency	DC-18GHz	DC-26.5 GHz / DC-40 GHz	DC-50 GHz / DC-67 GHz
Impedance	$50 \Omega \pm 2 \Omega$	$50 \Omega \pm 1 \Omega$	$50 \Omega \pm 1 \Omega$
IL (dB/m)	2.10 व 18 GHz	2.41 ® $26.5 \mathrm{GHz}-3.11$ तa 40 GHz	5.00 a $50 \mathrm{GHz}-5.92 \mathrm{a}$ 67 GHz
Test IL (dB/ft)	0.64 a 18 GHz	0.73 Q $26.5 \mathrm{GHz}-0.94 \mathrm{a} 40 \mathrm{GHz}$	1.52 a $50 \mathrm{GHz}-1.80 \mathrm{a} 67 \mathrm{GHz}$
Phase with flexure stability	$2^{\circ}$ Q 18 GHz	$2^{\circ}$ ล $26.5 \mathrm{GHz}-5^{\circ}$ a 40 GHz	$6^{\circ}$ a $50 \mathrm{GHz}-8^{\circ}$ ล 67 GHz
Amplitude stability (dB)	0.05 व 18 GHz	0.05 a 40 GHz	0.05 व 50 GHz
Shielding Effectiveness	-110 dB min Ca 1 GHz	-100 dB min C 1 GHz	-100 dB min C 1 GHz
Crush resistance	$135 \mathrm{lb} /$ linear in.	$260 \mathrm{lb} / \mathrm{linear} \mathrm{in}$.	$260 \mathrm{lb} / \mathrm{linear} \mathrm{in}$.
Minimum bend radius	25 mm (1 in.)	25 mm (1 in.)	25 mm (1 in.)
Temperature ( ${ }^{\circ} \mathrm{C}$ )	$-55 /+125^{\circ} \mathrm{C}$	$-55 /+125^{\circ} \mathrm{C}$	$-55 /+125^{\circ} \mathrm{C}$
Connectors	SMA, N, TNC, PC7	SMA 3.5, SMA 2.9, NMD 2.9, TVAC 2.9, SMA 2.4mm, N	$2.4 \mathrm{~mm} / 1.85 \mathrm{~mm}$
Flexure life cycle	10,000	20,000	20,000
Mating cycles durability	5,000	5,000	5,000
Armor	Available	Integrated	Integrated
Rohs/REACH	Yes	Yes	Yes

*Please refer to Testpro catalog D1A295TE

## Space Qualified Products

## COAXIAL CONNECTORS

Full range of coaxial connectors operating up to Ka band.

- SMA and SMA 2.9 interfaces ESCC QPL:

Qualified according to ESCC 3402 specifications by European Space Agency (ESA)


- TNC and SMP interfaces classified EPPL: ESA Preferred Part List

Radiall has expended the SMP range to include, SMP-LOCK connectors featuring a robust locking mechanism. Qualified for space applications, this new interface is the best solution when size, weight, security, and high RF performance are required. This new interface is compatible with most of Radiall products below.

## LOW LOSSES CABLE ASSEMBLIES

Space qualified low loss flexible coaxial cable assemblies up to 40 GHz

- Available connectors: SMA, SMA 2.9, TNC or SMP


## SEMI-RIGID CABLE ASSEMBLIES

Space qualified semi-rigid coaxial cable assemblies up to 40 GHz - Available connectors: SMA, SMA 2.9, TNC or SMP


## Space Qualified Products

## COAXIAL SWITCHES

A full range of light weight Space qualified switches operating up to the Ka band.

- SPDT, DPDT, DP3T and T switch configurations available
- Available connectors: SMA, SMA 2.9 and TNC


## TERMINATIONS

Range of low power coaxial loads up to 40 GHz and ESA qualified (European Space Agency).

- Available connectors: SMA, SMA 2.9, SMP and TNC interface



## ATTENUATORS

Range of low power coaxial attenuators DC - 40 GHz qualified by European Space Agency (ESA).

- Available connectors: SMA, SMA 2.9 interface
- Attenuation 0 to 30 dB



## PHASE SHIFTERS

These components create a mechanical adjustable phase shift by variation in the physical length of the transmission line up to 22 GHz .


## Switches Application

COAXIAL TRANSFER SWITCHES (DPDT)
A DPDT is Double Pole Double Throw switch that provides two independent pairs of RF paths that are actuated simultaneously. The transfer switch is a modified DPDT device, where as a true DPDT switch is a six port device that contains completely independent transmission paths.
In a transfer switch, two transmission paths are not completely independent as shown below:


DPDT


TRANSFER

Examples of transfer switch applications:
R577 Ramses, R593 Platinum or R513 Titanium series can be selected for this application

Redundancy of two transmitters:


Active transmitters are connected directly to the antenna. A second transmitter is terminated to a medium power termination, and put in stand by position, ready to switch to the antenna in case of a failure of the active transmitter. This is done to create redundancy for antenna maintenance.

Two transmitters to two antennas:
For better signal diversity, 2 antennas are alternately connected to either of the two transmitters.

## Switches Application

Coaxial Transfer as a bypass switch for circuit insertion applications:


A full RF or microwave passive circuit or circuit element as a filter can be inserted into a coaxial transmission line by using a transfer switch. This element is shortened by a transfer blade in through position.

Other RF arrangements for a bypass function:

- Two SPDT switches configured to operate as a bypass switch
- R570 RAMSES, R596 (Surface Mount Technology) or R595 PLATINUM series can be used to achieve a bypass function


A more basic option, SPDT (Single Pole Double Throw) can be used to perform a bypass switch function. The advantage of using 2 SPDT relays instead of a transfer switch is a possible reduction in total package size. Generally, the use of 2 SPDT creates a higher isolation than a transfer switch.

A DP3T switch configured to operate as a transfer switch:
A R585 Ramses or R595 Platinum series can be selected to insert a passive or active component or circuit in a RF or microwave line.


An active component as an amplifier can be inserted in a microwave line; this amplifier is connected to a 50 Ohm termination (as a booster in stand-by status) when not inserted in the main coaxial line.

Our most important connection is with you. ${ }^{\text {m }}$

It's not just a slogan. It's a statement of our earnest desire to put you at the forefront of all our business practices. As part of Radiall's mission to be avaitable and accessible, we make it a priority to have local offices around the globe ready and able to assist you wherever you are, whenever you need us.

## Europe

FINLAND	Radiall Finland P0 Box 202-90101 Oulu
FRANCE	Radiall SA 25 Rue Madeleine Vionnet - 93300 Aubervilliers
GERMANY	Radiall GmbH Carl-Zeiss Str. 10-D 63322 Rödermark
ITALY	Radiall Elettronica S.R.L Via Della Resistenza 113-20090 Buccinasco Milano
NETHERLANDS	Radiall Nederland BV Hogebrinkerweg 15b-3871 KM Hoevelaken
SWEDEN	Radiall AB Sollentunavägen 63-191 40 Sollentuna
UNITED KINGDOM	Radiall Ltd 6 Union Park - Packet Boat Lane - Uxbridge, Middlesex UB8 2GH

Asia

CHINA
HONG KONG

INDIA

## Americas

USA \& CANADA

JAPAN Nihon Radiall Shibuya-Ku Ebisu 1-5-2, Kougetsu Bldg 405 - Tokyo 150-0013

## ADDRESS

Shanghai Radiall Electronics CO, Ltd No 390 Yong He Rd SHANGHAÏ 200072 P.R.C
Radiall Electronics (Asia) Ltd Flat D, 6/F, Ford Glory Plaza, 37-39 Wing Hong Street - Cheung Sha Wan - Kowloon - Hong Kong

Radiall India Pvt. Ltd
25.D.II phase Peenya Industrial Area. Bangalore-560058

Radiall USA, Inc. 8950 South 52nd Street Ste 401 Tempe, AZ 85284

## PHONE

+358 407522412
+33 (0)1 49353535
+49607491070
+39 024885121
+31 (0)33 2534009
+4684443410
+44 (0)1895425000

FAX
+496074910710
+39 0248843018
+31 (0)33 2534512
+44(0)1895425010

EMAIL
infofi@radiall.com info@radiall.com infode@radiall.com infoit@radiall.com infonl@radiall.com infose@radiall.com infouk@radiall.com

## Also Represented In...

AUSTRALIA AUSTRIA BELGIUM BRAZIL CZECH REPUBLIC DENMARK ESTONIA GREECE HUNGARY INDONESIA ISRAEL KOREA LATVIA LITHUANIA MALAYSIA NORWAY PHILIPPINES POLAND PORTUGAL RUSSIA SINGAPORE SPAIN SWITZERLAND TAIWAN THAILAND VIETNAM SOUTH AFRICA


[^0]:    *Available with "solder pins" models only.

