High Performance Multiport Switches PLATINUM Series / SPnT terminated up to 40 GHz

Radiall's PLATINUM series switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles, Radiall's PLATINUM series switches are a perfect solution for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N:

R594873427 is a SPnT SMA2.9 up to 40 GHz, Latching with Indicators, Self cut-off, Auto-Reset, TTL driver and HE10 connector.

PART NUMBER SELECTION

(1) connector SMA 2.9 is equivalent to "K connector®", registered trademark of Anritsu.

High Performance Multiport Switches PLATINUM Series / SPnT terminated up to 40 GHz

GENERAL SPECIFICATIONS

Operating mode		Latching		
Nominal operating voltage (across operating temperature)	Vdc	24 (20/32)		
Coil resistance (+/-10%)	Ω	120		
Operating current at 23°C	mA	200		
Maximum stand-by current	mA	50		
		RF path Cold switching	: See Power page 5-53	
Average power		Hot switching: 1 Watt Cw		
		Internal terminations 1	Watt average into 50 $\boldsymbol{\Omega}$	
TTL input	High Level	3 to 7 V	1.4 mA max at Vcc = Max	
	Low Level	0 to 0.8 Volts	-	
		Maximum withstanding voltage	60V	
		Maximum current capacity	150 mA	
Indicator specifications		Maximum "ON" resistance	2.5 Ω	
		Minimum "OFF" resistance	100ΜΩ	
Switching time (Max)	ms	15		
Life (Min) for	SMA	10 million cycles		
	SMA 2.9	2.5 million cycles		
Connectors		SMA - SMA 2.9		
Actuator terminals		HE10 ribbon receptacle		
Weight (Max)	g	230		

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	-25°C to +75°C		
Storage temperature range	-55°C to +85°C		
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	-55°C to +85°C (10 cycles)		
Vibration (MIL STD 202, Method 204D, Cond.D)	10-2000 Hz, 10g operating		
Shock (MIL STD 202, Method 213B, Cond.C)	50g / 6 ms, 1/2 sine operating		
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	65°C, 95% RH, 10 days		
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)		
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55dB at 20GHz		
Magnetic field	< 5.10-5 gauss at 1 meter		

PLATINUM Series / SPnT terminated up to 40 GHz

RF PERFORMANCES

Part number		R5943-34-7	R5944-34-7 R5944-36-7	R594F-34- R594F-36-	7 7	R5948-34-7 R5948-36-7	7 7	
Frequency Range	GHz	DC to 6	DC to 20	DC to 40				
Impedance	Ω	50						
Insertion Loss (Max)	dB	0.3 + 0.015 x frequency (GHz)						
Isolation (Min)	dB	100	DC to 6 GHz 100 6 to 12.4 GHz 90 12.4 to 20 GHz 80	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz	100 90 80 70	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	100 90 80 70 60	
V.S.W.R. [Max]	dB	1.20	DC to 6 GHz 1.20 6 to 12.4 GHz 1.35 12.4 to 20 GHz 1.45	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz	1.20 1.35 1.45 1.70	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	1.20 1.35 1.45 1.70 1.90	
Repeatability (measured at 25	i°C)		0.03 dB			0.05 dB		

TYPICAL RF PERFORMANCES

High Performance Multiport Switches PLATINUM Series / SPnT terminated up to 40 GHz

ELECTRONIC POSITION INDICATORS

THIS OPTION IS NOT AVAILABLE WITH TYPE 4

The electronic position indicators use photo-MOS transistors which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply (20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.

Pin	number	Function				
	2	Indicator	Cor	nmon		
	4	Indicator	RF	path	1	
	6	Indicator	RF	path	2	
	8	Indicator	RF	path	3	
	10	Indicator	RF	path	4	
	12	Indicator	RF	path	5	
	14	Indicator	RF	path	6	

PLATINUM Series / SPnT terminated up to 40 GHz

DRIVING THE SWITCH

PLATINUM SERIES

5 - 50

Each RF path is driven independently, and can be closed or open by applying ground to the corresponding "open" or "close" pin.

TYPE 4: WITHOUT TTL AND WITHOUT INDICATOR

Switch connector

Mating cable connector

Standard drive:

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32VDC)
- Select desired RF path by applying ground to the corresponding "close" pin
- (Ex: ground pin 3 to close RF path 1)
- To open desired RF path connect ground to the corresponding "open" pin (Ex: ground pin 4 to open RF path 1)

• To open all RF paths, first ensure that all RF path "close" pins are disconnected from ground, then to complete the operation, connect pin 16 to ground

Make-Before-Break:

Make-Before-Break switching can be accomplished by closing the new RF path before opening the previously selected RF path. To complete the operation, close the new the new RF port for at least 15 minutes (minimum), then open the previously selected RF port.

PLATINUM Series / SPnT terminated up to 40 GHz

TYPE 7: WITH TTL (OPTION "2") / WITHOUT TTL (OPTION "1") AND INDICATORS

Each RF path can be closed by applying Ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.

Switch connector

Mating cable connector

Standard drive option "1":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)

• Select (close) desired RF path by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1)

• To select another path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement), then apply ground to the "drive" pin which corresponds to the desired RF path

• TTo open all RF paths, ensure that all RF path "drive" pins are disconnected from ground, then complete the operation by applying ground to pin 16

TTL drive option "2":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)

• Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1)

• To select another path, ensure that all unwanted RF path "drive" pins are in TTL "Low" position (to prevent multiple RF path engagement), then pply TTL "High" to the "drive" pin which corresponds to the desired RF path

• To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position, then to complete the operation by applying TTL "High" to pin 16

Break-Before-Make:

Open the undesired RF path after 15 minutes (minimum), then close the new RF port.

Make-Before-Break:

Ensure that the previously selected RF path "drive" is connected to ground (or TTL "High" for option "2"), then close the new RF path.

TYPICAL OUTLINE DRAWING

SMA connectors

PLATINUM SERIES

SMA 2.9 connectors

PLATINUM Series / SPnT terminated up to 40 GHz

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: + 25°C
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1.

Optional Features For SPnT

EXAMPLES OF DEDICATED APPLICATION OPTIONS

SPnT with flat ribbon cable for easy installation with limited space.

Thermal vacuum SPnT designed based on our expertise in Space. For more detailed information, see page 7-6 to 7-8.

SPnT with special mounting bracket for easy mounting in Automatic Test Equipment.

Subminiature SP6T with a micro D connector instead of solder pins.

SP3T used for a military application with sequential access and severe environmental characteristics.

Subminiature SP6T developed for test bench applications requiring low RF leakage.

