

SPnT

SUBMINIATURE SERIES

SPnT up to 40 GHz ：R591 Series \qquad 5－2 to 5－4
R591 Series Electrical Schematics

USB SERIES

SPnT USB up to 40 GHz：R57xxxxx01 Series
（Terminated and Non－Terminated）． \qquad 5－8 to 5－13

RAMSES SERIES
SPnT up to 50 GHz：R57x Series
（Terminated and Non－Terminated） \qquad ．5－14 to 5－25 SPnT up to 12.4 GHz：R57x Series
（ N, BNC and TNC models）． \qquad 5－26 to 5－30
RF Connector Allocation for SPnT Series ． 5

ACCESSORIES SPNT \＆ELECTRICAL SCHEMATICS

Coaxial SPnT－Accessories
5－33 to 5－37
Coaxial SPnT－Electrical Schematics
5－38 to 5－43

TITANIUM SERIES

High Performance Multiport Switches
SPnT up to 40GHz：R51x Series．
5－44 to 5－50

PLATINUM SERIES

High Performance Multiport Switches－SPnT Terminated Up to 40 GHz ：R594 Series 5－52 to 5－58

OPTIONAL FEATURES

Optional Features

SPNT PART NUMBER SELECTION GUIDE ${ }^{[1]}$

																			$\sum_{\text {un }}^{\stackrel{u}{2}}$						$\begin{aligned} & \text { ú } \\ & \text { O} \\ & \text { in } \end{aligned}$		nn응00$i o$						$\ddot{\sim}$							
$\begin{aligned} & \stackrel{\ddot{0}}{\vdots} \\ & \stackrel{\sim}{\omega} \end{aligned}$	$\begin{aligned} & \text { ᄃ } \\ & .0 \\ & 0 \\ & 0 \\ & 0 \\ & 00 \\ & 00 \\ & 0 \\ & 0 \end{aligned}$						$\begin{aligned} & N \\ & N \\ & 0 \\ & \infty \\ & N \\ & N \\ & n \end{aligned}$	N 0 0 		$\begin{aligned} & \text { N } \\ & 0 \\ & \text { O} \\ & \text { G } \\ & \text { i } \\ & \sum_{n}^{N} \end{aligned}$		N 1 0 0 0		$\begin{aligned} & \text { N } \\ & 0 \\ & \mathrm{~m} \\ & \mathrm{Z} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \underset{\mathrm{~N}}{\mathrm{Z}} \end{aligned}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \\ & \tilde{\sim} \\ & \underset{\sim}{0} \end{aligned}$	$\begin{aligned} & \text { N} \\ & 5 \\ & \\ & \\ & \hline \end{aligned}$				－				$\underset{\sim}{\infty}$			$\begin{aligned} & \text { ᄃ } \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\Phi} \\ & \stackrel{y y}{c} \\ & \stackrel{\rightharpoonup}{\mid} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$					$\begin{array}{\|c} \stackrel{\rightharpoonup}{0} \\ \vdots \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0.0 \end{array}$	$\begin{aligned} & \text { n } \\ & \underset{\Sigma}{c} \\ & \underset{\Sigma}{n} \end{aligned}$					
$\sum_{\substack{i \\ \underset{\sim}{n}}}^{\substack{i \\ \hline}}$	$\begin{aligned} & \stackrel{\imath}{c} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \bar{\gamma} \\ & \text { 欠 } \end{aligned}$	，	＇	＇	m	，	＇	\wedge	∞	＇	ш	，	，	，	，	，	，＇	－	－$\stackrel{0}{2}$	O	，	v		m	$\stackrel{\bigcirc}{\square}$	\bigcirc	－	\sim	m	\checkmark	，	\bigcirc	，	，	๓	，		，	，
$\stackrel{n}{g}$	$\begin{aligned} & \text { t } \\ & \text { c } \\ & \text { 保 } \end{aligned}$	$\begin{aligned} & \mathrm{n} \\ & \end{aligned}$	m	\checkmark	，	，	，	－	ᄂ	∞	，	，	，	，	，	，	－＇	，＇	－	－．	－		，		，	$\stackrel{\infty}{\dagger}$	\bigcirc	，	，	，	，	，	，	，	－	，	，	，	，	，
岃	$\stackrel{\rightharpoonup}{t}$	，	m	\checkmark	m	，	－	．	แ	$\stackrel{\infty}{\sim}$	－	ш	a	，	，	，	，．	，．	亏				v		m	$\underset{\sim}{\tilde{m}}$	\bigcirc	－	\sim	m	\checkmark	∞	\bigcirc	n	，	，	＇		，	，
	\sim	$\underset{\sim}{n}$	m	\checkmark	＇	，	，	，	，	，	，	，	，	\bigcirc	－	\sim	\cdots	\bigcirc	$\bar{\circ}$		－	＇	v		m	$\stackrel{N}{\bar{m}}$	\bigcirc	－	\sim	m	\checkmark	∞	\bigcirc	n	，	，	，		，	＇
\sum_{i}	$\begin{aligned} & \stackrel{\imath}{c} \\ & \stackrel{n}{n} \end{aligned}$	¢	\sim	－	＇	m	＇	\checkmark	แ	∞	，	，	，	，	＇	，	＇	＇		\checkmark	－			m	＇	$\stackrel{\bigcirc}{7}$	，	－	\sim	，		，	，	，	，	，	\wedge		\cup	\propto
$\sum_{\substack{\text { a }}}^{\substack{\text { d }}}$	$\begin{aligned} & \stackrel{\imath}{c} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { H } \\ & \underset{\sim}{\circ} \end{aligned}$		，		m	，	－	4	∞		，		－	，		＇＇	＇ ＇		̇	f	－		m	＇	$\stackrel{\ominus}{7}$	，	－	\sim		，	，	，			，	\wedge		\cup	\simeq

Notes

Example of P／N：R591703400 is a SP4T SMA up to 26.5 GHz ，normally open， 28 Vdc ，without option，solder pins．
1．For part number creation and available options，see detailed part number selection for each series．

SUBMINIATURE SPNT UP TO 40 GHz

SMA - SMA 2.9- QMA

PART NUMBER SELECTION

Radiall's R591 coaxial subminiature switches have a typical operating life exceeding 25 million cycles; Providing excellent RF performance, repeatability, and a guaranteed life of 10 million cycles, which makes switches ideal for Automated Test Equipment (ATE) and other measurement applications. These subminiature switches are also an excellent choice for Mil/ Aero applications due to their small size, light weight, and outstanding shock and vibration handling capabilities.

Example of P/N: R591302420 is a SP4T SMA up to 6 GHz , normally open, 12 Vdc with TTL driver and solder pins.

SERIES PREFIX

RF CONNECTORS

3: SMA up to 6 GHz
7: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}{ }^{[6]}$
E: QMA up to $6 \mathrm{GHz}{ }^{[5]}$
TYPE
0: Normally open
2: Latching, global reset
6: Latching, separated reset ${ }^{[1]}$

ACTUATOR VOLTAGE

2: 12 Vdc
3: 28 Vdc

NUMBER OF POSITIONS

4: 4 positions
6: 6 positions

OPTIONS

0 : Without option
1: Positive common
2: With TTL driver ${ }^{[2,3 \& 4]}$
3: With suppression diodes
4: With suppression diodes and positive common

ACTUATOR TERMINALS

0: Solder pins
5: Micro-D connector

Notes

1. Available with "solder pins" models only.
2. Polarity is not relevant to application for switches with TTL driver.
3. Suppression diodes are already included with TTL option.
4. Available with "normally open" models only.
5. The QLF tradermark (Quick Lock Formula ${ }^{\oplus}$) standard applies to QMA and QN series and guaranties the full intermateability between suppliers using this tradermark. Using QLF certified connectors also guarantees the specified level of RF performance.
6. Connector SMA2.9 is equivalent to "K connector ${ }^{\circledR ",}$, registered trademark of Anritsu.

R591

GENERAL SPECIFICATIONS

OPERATING MODE		NORMALLY OPEN		LATCHING	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (21 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (21 / 30) \end{gathered}$
Coil resistance (+/-10\%)	Ω	48	250	60	285
Operating current at $23{ }^{\circ} \mathrm{C}$	mA	250	110	200	98
Average power		See RF Power Rating Chart page 1-13			
TTL input	High Level	2.2 to 5.5 Volts		$800 \mu \mathrm{~A}$ max 5.5 Volts	
	Low Level	0 to 0.8 Volts		$20 \mu \mathrm{~A}$ max 0.8 Volts	
Switching time (max)	ms	10			
Life	SMA-QMA	10 million cycles			
	SMA 2.9	2 million cycles			
Connectors		SMA - QMA - SMA 2.9			
Actuator terminals		Solder Pins: double row connector for wrapping, soldering ($250^{\circ} \mathrm{C}$ max $/ 30 \mathrm{sec})$, or connecting to 2.54 mm pitch female connector. 9 pin micro-D receptacle M83513/07-A according to MIL-C-85513.			
Operating temperature range		$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Storage temperature range		$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
Sine vibration (According to MIL STD 202, Method 204D, Cond. D)		$10-2,000 \mathrm{~Hz}, 20 \mathrm{~g}$-operating			
Random vibration (According to MIL STD 202, Method 214A, Profile I, Cond. F)		$50-2,000 \mathrm{~Hz}, 20.71 \mathrm{~g}$ - operating			
Shock(According to MIL STD 202, Method 213B, Cond. C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine - operating			

RF PERFORMANCE

CONNECTORS	FREQUENCY RANGE GHz		$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (MAX) } \end{aligned}$	INSERTION LOSS (MAX) dB	ISOLATION (MIN) dB	$\begin{aligned} & \text { IMPEDANCE } \\ & \Omega \end{aligned}$
QMA / SMA	DC-6	DC-3	1.20	0.20	80	50
		3-6	1.30	0.30	70	
SMA	DC-26-5	DC-3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.60	0.60	55	
SMA 2.9	DC-40	DC-3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12. 4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	55	
		26.5-40	2.20	1.10	45	

Notes

See page 5-4 for typical RF performance.

Subminiature Series

TYPICAL RF PERFORMANCE

TYPICAL OUTLINE DRAWING ${ }^{[1]}$

SOLDER PIN MODEL

MICRO-D MODEL

CONNECTORS	SMA
A max $(\mathrm{mm} /[$ inches $])$	$7.7[0.303]$

Notes

R591 SERIES ELECTRICAL SCHEMATICS

NORMALLY OPEN WITHOUT OPTION

 R591-0- 0 -

NORMALLY OPEN WITH TTL DRIVE R591-0--2-

NORMALLY OPEN WITH POSITIVE COMMON \& SUPPRESSION DIODES R591-0--4-

NORMALLY OPEN WITH POSITIVE COMMON R591-0--1-

NORMALLY OPEN WITH SUPPRESSION DIODES R591-0- -3-

LATCHING GLOBAL RESET WITHOUT OPTION R591-2- - 0 -

LATCHING GLOBAL RESET WITH POSITIVE COMMON R591-2- -1-

LATCHING GLOBAL RESET WITH POSITIVE COMMON \& SUPPRESSION DIODES R591-2--4-

LATCHING SEPARATED RESET WITH POSITIVE COMMON R591-6-1-

LATCHING GLOBAL RESET WITH SUPPRESSION DIODES R591-2- -3-

LATCHING SEPARATED RESET WITHOUT OPTION R591-6- 0 -

LATCHING SEPARATED RESET WITH SUPPRESSION DIODES R591-6--3-

Subminiature Series

LATCHING SEPARATED RESET WITH POSITIVE COMMON \& SUPPRESSION DIODES
 R591-6--4-

PIN IDENTIFICATION

SOLDER PINS (TOP VIEW) ${ }^{[1]}$

9 PIN MICRO-D (TOP VIEW)

- 16 contact female connector
- NC: not connected
- For SP4T, ways 3 and 6 not connected
- Pin R = reset of all paths

TYPE		C	V	1	2	3	4	5	6	R	R1	R2	R3	R4	R5	R6
Normally open	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	NC						
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	NC						
Latching global reset	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	+reset	NC	NC	NC	NC	NC	NC
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	-reset	NC	NC	NC	NC	NC	NC
Latching individual reset ${ }^{[2]}$	Negative common	-C	NC	+1	+2	+3	+4	+5	+6	NC	+res. 1	+res. 2	+res. 3	+res. 4	+res. 5	+res. 6
	Positive common	+C	NC	-1	-2	-3	-4	-5	-6	NC	-res. 1	-res. 2	-res. 3	-res. 4	-res. 5	-res. 6
Normally open with TTL drive	-	RTN	VCC	E1	E2	E3	E4	E5	E6	NC						

[^0]
SPNT USB UP TO 40 GHz

SMA - SMA 2.9

Utilizing Radiall's proven and patented RAMSES concept, our team of experts and engineers integrated a mini-USB terminal on SP6T and SP8T switches for simplified use especially in test \& lab applications.

Featuring an easy-to-integrate design, USB Coaxial Switches are delivered with a 1 meter long USB cable for power supply and switch drive. A soft front panel is provided to control the switches but commonly used software programming platforms such as Visual Basic, C\#, C++, LabVIEW and VEE are also compatible.

Example of P/N: R573F11601 is a non-terminated SP6T SMA up to 26.5 GHz , Normally Open, 5 Vdc, Indicators with a mini USB port.

PART NUMBER SELECTION
SERIES PREFIX
MODEL
3: Without 50Ω termination
4: With 50Ω termination
RF CONNECTORS
F: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}{ }^{[1 \& 2]}$
TYPE
1: Normally open I. + C.
ACTUATOR VOLTAGE
1: 5 Vdc
NUMBER OF POSITIONS
6: 6 positions
8: 8 positions

OPTIONS

0 : Without option

ACTUATOR TERMINALS

1: Mini USB socket

Notes

I.C.: Indicator contact

1. Available only with 6 positions.
2. Connector SMA 2.9 is equivalent to "K connector ${ }^{\circledR ",}$, registered trademark of Anritsu.

USB Series

APPLICATION NOTE

USB coaxial switch as cascade

You can use as many USB switches in cascade as you want. Each product is recognized by its automatic affectation to the ComPort and in order to differentiate them, each product has its own serial number which can be read by the software.

In order to provide power supply ($5 \mathrm{~V} / 420 \mathrm{~mA}$) and drive as many switches as you want with your computer, you will need a hub USB which can provide same power as a classic USB port of the computer ($500 \mathrm{~mA} / 5 \mathrm{~V}$) or a PCI expansion card USB (if it is a desktop).

APPLICATION EXAMPLE

BEFORE

AFTER

DC power from a power supply and wires to provide power to PF Paths

Control with computer

GRAPHICAL USER INTERFACE WITH MORE THAN ONE PRODUCT

- Every product has its own serial port. To control manually you can also open many soft front panel.
- Each product has its own serial number and different communication port.
- The user has also the possibility to manage the control automatically using LabView drivers provided or using Vb.net, C++, C\# with DLL provided also.

USB Series

GENERAL SPECIFICATIONS

OPERATING MODE		NORMALLY OPEN	
Nominal operating voltage	Vdc	5	
Coil resistance (+/-10\%)	Ω	11.9	
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	420	
Average Power		See Power Rating Chart page 1-13	
Indicator rating		Indicators status are returned by software	
Switching time (max)	ms	15 ms	
Life (min)	Non-terminated SP6T	SMA	SMA 2.9
	(R573 series)	5 million cycles	2 million cycles
	Terminated SP6T (R574 series)	2 million cycles	
	SP8T (all models)		
Connectors		SMA - SMA 2.9	
Actuator terminals		Mini USB socket	
Operating temperature range	SMA - SMA 2.9	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	
Storage temperature range	SMA - SMA 2.9	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Vibration (MIL STD 202, method 204D, cond.D)		$10-2,000 \mathrm{~Hz}, 20 \mathrm{~g}$ operating - switch only	
Shock (MIL STD 202, method 213B, cond.C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating - switch only	

RF PERFORMANCE - SP6T

CONNECTORS	FREQUENCY RANGE GHz		$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (MAX) } \end{aligned}$	$\begin{aligned} & \text { INSERTION } \\ & \text { LOSS (MAX) } \\ & \mathrm{dB} \end{aligned}$	ISOLATION (MIN) dB	$\begin{aligned} & \text { IMPEDANCE } \\ & \Omega \end{aligned}$
SMA	DC-26.5	DC-6	1.20	$\begin{gathered} 0.3+0.015 \\ \text { x frequency } \\ (\mathrm{GHz}) \end{gathered}$	80	50
		6-12.4	1.35		70	
		12.4-20	1.45		65	
		20-26.5	1.70		60	
SMA 2.9	DC-40	DC-6	1.20		80	
		6-12.4	1.35		70	
		12.4-18	1.45		65	
		18-26.5	1.70		60	
		26.5-40	1.90		55	

RF PERFORMANCE - SP8T

CONNECTORS	FREQUENCY RANGE GHz		$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (MAX) } \end{aligned}$	$\begin{aligned} & \text { INSERTION } \\ & \text { LOSS (MAX) } \\ & \text { dB } \end{aligned}$	ISOLATION (MIN) dB	$\begin{aligned} & \text { IMPEDANCE } \\ & \Omega \end{aligned}$
SMA	DC-26.5	DC-3	1.20	0.20	80	50
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-16	1.50	0.55	60	
		16-18	1.60	0.60	60	
		18-22	1.70	0.70	60	
		22-26.5	2.00	1.10	55	

USB Series

TYPICAL RF PERFORMANCE

Example: SP6T SMA up to 26.5 GHz

Example: SP6T SMA 2.9 up to 40 GHz

Example: SP8T SMA 2.9 up to 26.5 GHz

V.S.W.R

V.S.W.R

Frequency (GHz)
V.S.W.R

USB Series

TYPICAL OUTLINE DRAWINGS

Non-terminated or terminated 6 positions

SMA MODEL

SMA 2.9 MODEL

Notes
All dimensions are in millimeters [inches].

USB Series

TYPICAL OUTLINE DRAWINGS

Non-terminated or terminated 8 positions
SMA MODEL

Notes

For electrical schematics see page 5-43.

SPNT TERMINATED \& NON-TERMINATED UP TO 50 GHz

SMA - SMA 2.9-2.4 MM - QMA - DIN 1.6 / 5.6

Radiall's R573 and R574 multi-throw coaxial switches are offered in many configurations (over 40,000 possible combinations) including terminated and non-terminated options. Radiall offers reliable products, with shorter delivery times and competitive pricing. Excellent typical RF performance make RAMSES switches (40 GHz) ideal for Automated Test Equipment (ATE) and other measurement applications. These switches are suitable for defense, industrial, instrumentation and telecommunication applications.
Example of P/N: R574453605 is a terminated SP6T SMA up to 18 GHz , Latching, Self Cut-Off, 28 Vdc, Indicators and male 25 pin D-Sub connector.

PART NUMBER SELECTION

SERIES PREFIX \qquad
R57

MODEL

3: Without 50Ω termination
4: With 50Ω termination
RF CONNECTORS
3: SMA up to 3 GHz
E: QMA up to $6 \mathrm{GHz}{ }^{[4,5 \& 13]}$
4: SMA up to $18 \mathrm{GHz}{ }^{[2]}$
F: SMA up to $26.5 \mathrm{GHz}{ }^{[6]}$
8: SMA 2.9 up to $40 \mathrm{GHz}{ }^{[4 \& 14]}$
J: 2.4 mm up to $50 \mathrm{GHz}{ }^{[11]}$
9: DIN $1.6 / 5.6$ up to $2.5 \mathrm{GHz}^{[4 \& 5]}$
TYPE
0: Normally open
1: Normally open I. + C.
2: Latching
3: Latching + I.C.
4: Latching + S.C.O. ${ }^{[1 \& 4]}$
5: Latching + S.C.O. + I.C. ${ }^{[1 \& 4]}$
8: Latching + S.C.O. + A.R. ${ }^{[1]}$
9: Latching + S.C.O. + I.C. + A.R. ${ }^{[1]}$

Notes

I.C.: Indicator contact / S.C.O. : Self Cut-Off / A.R. : Auto Reset

1. These models are already equipped with suppression diodes
2. 12 positions are available only up to 12.4 GHz , for 12 positions up to 18 GHz select digit F
3. Latching BCD driver enables also a global reset through driver code 0000 (see BCD logic coding page 1-11)
4. Available only up to 6 positions
5. Model "3" only
6. 10 positions are available only up to $22 \mathrm{GHz}, 12$ positions only up to 18 GHz
7. From 3 to 8 positions, this option is only available for type $0,1,2,3$ and for type 8 and 9 combined with 28 Vdc . From 10 to 12 positions,
only for type 0, 1, 2 and 3

ACTUATOR TERMINALS

$\mathbf{0}$: Solder pins
5: D-Sub connector
OPTIONS ${ }^{[15]}$
0: Without option
1: Positive common ${ }^{[7]}$
2: Compatible TTL driver ${ }^{[1,9 \& 10]}$
3: With suppression diodes
4: With suppression diodes and
positive common ${ }^{[12]}$
8: BCD TTL driver compatible ${ }^{[1,3,8 \& 9]}$
NUMBER OF POSITIONS
3: 3 positions
4: 4 positions
5: 5 positions
6: 6 positions
8: 8 positions
0: 10 positions
2: 12 positions
ACTUATOR VOLTAGE
2: 12 Vdc
3: 28 Vdc

RAMSES Series

GENERAL SPECIFICATIONS

Type 2, 3, 4 and 5:
Latching models have a RESET pin which commands the reset of all positions. This command should be used before switching from one position to another. If not, two positions will be set at the same time.

Note: During the RESET operation the global current is: the nominal operating current multiplied by the number of positions.
Type 8, 9:
Latching models with AUTOMATIC RESET are available; these products have an internal SET/RESET circuit which automatically resets all the non-selected positions and sets the desired position. This option simplifies the use of latching switches by suppressing the RESET command in switching sequence.

An electronic circuit supplies successively groups of 2,3 or 4 actuators, in order to limit the maximum current. The current with this option is the total current of 2,3 or 4 reset coils in the same time (see table below).

Example: During the AUTOMATIC RESET operation, at $28 \mathrm{Vdc}, 4$ position switch has a temporary consumption of only 250 mA , during 40 ms maximum.

SWITCHING SEQUENCE

FOR SP6 TO 8T

$n=$ number of positions

OPERATING TOTAL CURRENT AT $23^{\circ} \mathrm{C}$ (MA) SPNT LATCHING

NUMBER OF POSITIONS	MANUAL RESET		AUTOMATIC RESET	MANUAL RESET
	AUTOMATIC RESET			
3 to 4	$320 \times n$	640	$125 \times n$	250
5 to 8	$320 \times n$	960	$125 \times n$	375
10 to 12	$320 \times n$	1280	$125 \times n$	500

FOR SP10 \& 12 T

Availability of options according to both type and number of positions.

TYPE	NUMBERS OF POSITIONS	AVAILABLE OPTIONS
0 or 1	3 to 12	0-1-2-3-4-8
2 or 3	3 to 6	0-1-2-3-4
	8 to 12	0-1-3-4
4 or 5	3 to 6	0-2
	8 to 12	N/A
8 or 9	3 to 8	0-1-2-8
	10 \& 12	0-2-8

RAMSES Series

GENERAL SPECIFICATIONS

OPERATING MODE		NORMALLY OPEN		LATCHING			
$\begin{aligned} & \text { Nominal operating } \\ & \text { voltage (across } \\ & \text { operating temperature) } \end{aligned}$	Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$		
Coil resistance (+/-10\%)	Ω	47.5	275	See table on previous page			
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	250	102				
Average power		See Power Rating Chart page 1-13					
TTL input	High Level	2.2 to 5.5 V (TTL Option) / $800 \mu \mathrm{~A}$ max 5.5 volts 3.5 to 5.5 V (BCD Option)					
	Low Level	0 to 0.8 V (TTL Option) / $20 \mu \mathrm{~A}$ max 0.8 volts 0 to 1.5 V (BCD Option)					
Indicator rating		$1 \mathrm{~W} / 30 \mathrm{~V} / 100 \mathrm{~mA}$					
Switching time (Max)	ms						
Life (Min)	Non-terminated SP3 to 6T (R573 series)	SMA - QMA		SMA 2.9-2.4 mm-1.6/5.6			
		5 million cycles		2 million cycles			
	erminated SP3 to 6T (R574 series)	2 million cycles					
	SP8 to 12T (all models)						
Connectors		SMA - SMA 2.9-2.4 mm - QMA - DIN 1.6/5.6					
Actuator terminals		Solder pins or male 25 pin D-sub connector					
Operating temperature range	2.4 mm - DIN 1.6/5.6	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$					
	SMA - SMA 2.9-QMA	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Storage temperature range	2.4 mm - DIN 1.6/5.6	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
	SMA - SMA 2.9 - QMA	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					
Vibration (MIL STD 202, method 204D, cond.D)		$\begin{aligned} & 10-2,000 \mathrm{~Hz}, 20 \mathrm{~g} \\ & \text { operating for SP3 to } 6 \mathrm{~T} \text {, survival for SP8 to } 12 \mathrm{~T} \end{aligned}$					
Shock (MIL STD 202, method 213B, cond.C)		$100 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine operating for SP3 to 6T, survival for SP8 to 12T					

RF PERFORMANCE - SMA CONNECTOR

NUMBER OF POSITIONS	FREQUENCY RANGE GHz		$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (MAX) } \end{aligned}$	INSERTION LOSS (MAX) dB	ISOLATION (MIN) dB	$\begin{gathered} \text { IMPEDANCE } \\ \Omega \end{gathered}$
3 to 6	$\begin{gathered} D C-3 \\ D C-18 \\ D C-26.5 \end{gathered}$	DC-3	1.20	0.20	80	50
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-18	1.50	0.50	60	
		18-26.5	1.70	0.70	50	
8	$\begin{gathered} D C-3 \\ D C-26.5 \end{gathered}$	DC-3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-16	1.50	0.55	60	
		16-18	1.60	0.60	60	
		18-22	1.70	0.70	60	
		22-26.5	2.00	1.10	55	
10	$\begin{gathered} D C-3 \\ D C-22 \end{gathered}$	DC - 3	1.20	0.20	80	
		3-8	1.30	0.30	70	
		8-12.4	1.40	0.40	60	
		12.4-15.5	1.50	0.50	60	
		15.5-18	1.70	0.70	55	
		18-22	1.80	0.80	55	
12	$\begin{gathered} D C-3 \\ D C-18 \end{gathered}$	DC-3	1.20	0.20	80	
		3-8	1.40	0.40	70	
		8-12.4	1.60	0.60	60	
		12.4-15	1.70	0.70	60	
		15-18	1.80	0.80	50	

RF PERFORMANCE

CONNECTORS	NUMBER OF POSITIONS	FREQUENCY RANGE GHz		$\begin{aligned} & \text { V.S.W.R. } \\ & \text { (MAX) } \end{aligned}$	$\begin{aligned} & \text { INSERTION } \\ & \text { LOSS (MAX) } \\ & \text { DB } \end{aligned}$	$\begin{aligned} & \text { ISOLATION } \\ & \text { (MIN) } \\ & \text { DB } \end{aligned}$	$\begin{aligned} & \text { IMPEDANCE } \\ & \Omega \end{aligned}$
SMA 2.9	3 to 6	DC-40	DC-6	1.30	0.20	70	50
			6-12.4	1.40	0.40	60	
			12.4-18	1.50	0.50	60	
			18-26.5	1.70	0.70	55	
			26.5-40	2.20	1.10	50	
2.4 mm	4 or 6	DC-50	DC-6	1.30	0.20	70	
			6-12.4	1.40	0.40	60	
			12.4-18	1.50	0.50	60	
			18-26.5	1.70	0.70	55	
			26.5-40	1.90	0.90	50	
			40-50	2.20	1.20	50	
1.6/5.6	3 to 6	DC-2.5	DC-1	1.30	0.20	80	75
			1-2.5	1.40	0.30	70	
QMA	3 to 6	DC-6	DC-3	1.20	0.20	80	50
			3-6	1.30	0.30	70	

R573 \& R574 TYPICAL PERFORMANCE

Example: SP6T QMA up to 6 GHz

INSERTION LOSS \& ISOLATION

V.S.W.R.

RAMSES Series

Example: Non-terminated SP6T up to 26.5 GHz
V.S.W.R

V.S.W.R

V.S.W.R

Example: Terminated SP6T up to 26.5 GHz

Example: Terminated SP6T SMA 2.9 up to 40 GHz

INSERTION LOSS \& ISOLATION

Example: Terminated SP6T 2.4 mm up to 50 GHz

V.S.W.R

V.S.W.R

V.S.W.R

RAMSES Series

Example: Non-terminated SP6T 1.6/5.6 up to 2.5 GHz

Example: SP8T SMA up to 26.5 GHz
INSERTION LOSS \& ISOLATION

Example: SP10T SMA up to 22 GHz
INSERTION LOSS \& ISOLATION

V.S.W.R

V.S.W.R

Example: SP12T SMA up to 18 GHz

TYPICAL OUTLINE DRAWINGS

CONNECTORS		A MAX (MM [INCHES])
SMA up to 26.5 GHz		7.7 [0.303]
SMA 2.9 up to 40 GHz		6.7 [0.264]
2.4 mm up to 50 GHz		6.7 [0.264]
QMA up to 6 GHz		10.8 [0.394]
DIN 1.6 / 5.6 up to 2.5 GHz		11.5 [0.433]
SOLDER PINS	Type 0 or 1 with option 0-1-3 or 4	
	Type 2 or 3 with option 0 or 1	

Notes
All dimensions are in millimeters [inches].

RAMSES Series

TYPICAL OUTLINE DRAWINGS

NON-TERMINATED 3 TO 6 POSITIONS (CONTINUED)

SOLDER PINS	Type 0 or 1 with option 2 or 8	
	Type 2 or 3 with option 2-3-4 or 8	
	Type 4-5-8 or 9 with option 0-1-2 or 8	
D-SUB CONNECTOR		All models
CONNECTORS		A MAX (MM [INC
SMA up to 26.5 GHz		7.7 [0.303]
SMA 2.9 up to 40 GHz		6.7 [0.264]
2.4 mm up to 50 GHz		6.7 [0.264]
QMA up to 6 GHz		10.8 [0.394]
DIN 1.6 / 5.6 up to 2.5 GHz		11.5 [0.433]

TYPICAL OUTLINE DRAWINGS

TERMINATED 3 TO 6 POSITIONS

	B
	SOLDER PINS
Type 0-1-2 or 3 with option 0-1-3 or 4	46.5 [1.811]
Type 0-1-2 or 3 with option 2 or 8	55.5 [2.17]
Type 4-5-8 or 9 with option 0-1-2 or 8	55.5 [2.17]

SMA $3 \mathrm{GHz} \& 18 \mathrm{GHz}$ MODELS

Notes
All dimensions are in millimeters [inches].

RAMSES Series

TYPICAL OUTLINE DRAWINGS

Terminated 3 to 6 positions 26.5 GHz, 40 GHz and 50 GHz

SMA 26.5 GHz MODEL

SMA 2.9 40 GHz \& 2.4 MM 50 GHz MODEL

	B
	SOLDER PINS
Type $0-1-2$ or 3 with option $0-1-3$ or 4	$48.5[1.89]$
Type $0-1-2$ or 3 with option 2 or 8	$57.5[2.24]$
Type $4-5-8$ or 9 with option $0-1-2$ or 8	$57.5[2.24]$

Notes
All dimensions are in millimeters [inches].

RAMSES Series

TYPICAL OUTLINE DRAWINGS

Terminated or non-terminated 8 to 12 positions

TERMINATED 8 POSITIONS SMA 26.5 GHz MODEL

TYPE	B MAX (MM [INCHES])
SOLDER PINS	
Type $0-1-2$ or 3 with option $0-1-3$ or 4	$50[1.97]$
Type $0-1-2$ or 3 with option 2 or 8 and Type $4-5-8$ or 9 with option $0-1-2$ or 8	$61[2.40]$

Notes

All dimensions are in millimeters [inches].

TERMINATED 10 POSITIONS SMA 22 GHz MODEL

TERMINATED 12 POSITIONS SMA 18 GHz MODEL

SPNT UP TO 12.4 GHz - RAMSES CONCEPT

N-BNC - TNC

Radiall's R573 and R574 multi-throw coaxial switches are offered in many configurations (over 40,000 possible combinations), including terminated and non-terminated options. Radiall offers reliable products, with shorter delivery times and competitive pricing. Excellent typical RF performance make RAMSES switches (12.4 GHz) ideal for Automated Test Equipment (ATE) and other measurement applications. These switches are suitable for defense, industrial, and telecommunication applications.

Example of P/N: R573103600 is a SP6T N up to 12.4 GHz , Normally Open, 28 Vdc , and solder pins.

PART NUMBER SELECTION
 R57

SERIES PREFIX \qquad
MODEL
3: Without 50Ω termination
4: With 50Ω termination

RF CONNECTORS

0: N up to $3 \mathrm{GHz}{ }^{[10]}$
1: N up to $12.4 \mathrm{GHz}^{[8 \& 10]}$
2: BNC up to $3 \mathrm{GHz}{ }^{[3 \& 4]}$
5: TNC up to $3 \mathrm{GHz}{ }^{[3 \& 4]}$
6: TNC up to $12.4 \mathrm{GHz}{ }^{[3 \& 4]}$
TYPE
0: Normally open
1: Normally open I. + C.
2: Latching
3: Latching + I.C.
4: Latching + S.C.O. ${ }^{[1 \% 3]}$
5: Latching + S.C.O. + I.C. ${ }^{[1 \& 3]}$
8: Latching + S.C.O. + A.R. ${ }^{[1]}$
9: Latching + S.C.O. + I.C. + A.R. ${ }^{[1]}$

Notes

I.C.: Indicator contact / S.C.O. : Self Cut-Off / A.R. : Auto Reset

Standard products are equipped with negative common

1. These models are already equipped with suppression diodes
2. Latching BCD driver enables also a global reset through driver code 0000 (see BCD logic coding page 1-13)
3. Available only up to 6 positions
4. Model "3" only
5. Available only for type 0,1,2 and 3
6. Available only with type 0,1,8 and 9
7. Polarity is not relevant to application for switches with TTL driver
8. 8 to 12 positions are available only up to 8 GHz
9. From 8 to 12 positions, this option is only available with type $0,1,8$ and 9
10. From 8 to 12 positions, this connector is only available without 50Ω termination
11. For precisions see availabilty of options chart page 5-27

RAMSES Series

GENERAL SPECIFICATIONS

Type 2, 3, 4 and 5:
Latching models have a RESET pin which commands the reset of all positions. This command should be used before switching from one position to another. If not, two positions will be set at the same time.

Note: During the RESET operation, the global current and the nominal operating current are multiplied by the number of positions.

Type 8, 9:
Latching models with AUTOMATIC RESET are available; these products have an internal SET/RESET circuit which automatically resets all the non-selected positions and sets the desired position. This option simplifies the use of latching switches by suppressing the RESET command in switching sequence.

An electronic circuit supplies successively groups of 2,3 or 4 actuators, in order to limit the maximum current. The current with this option is the total current of 2,3 or 4 reset coils in the same time (see table below).

Example: During the AUTOMATIC RESET operation, at $28 \mathrm{Vdc}, 4$ position switch has a temporary consumption of only 250 mA , during 40 ms maximum.

SWITCHING SEQUENCE

$n=$ number of positions

OPERATING TOTAL CURRENT AT $23^{\circ} \mathrm{C}$ (MA)

SPNT LATCHING

$\begin{gathered} \text { NUMBER } \\ \text { OF } \\ \text { POSITIONS } \end{gathered}$	12 VOLTS		28 VOLTS	
	MANUAL RESET	AUTOMATIC RESET	MANUAL RESET	AUTOMATIC RESET
3 to 4	$320 \times n$	640	$125 \times n$	250
5 to 8	$320 \times n$	960	$125 \times n$	375
9 to 12	$320 \times n$	1280	$125 \times n$	500

FOR SP10 TO 12T

Availability of options according to both type and number of positions.

TYPE	NUMBERS OF POSITIONS	AVAILABLE OPTIONS
0 or 1	3 to 12	$0-1-2-3-4-8$
2 or 3	3 to 6	$0-1-2-3-4$
	8 to 12	$0-1-3-4$
8 or 9	3 to 6	$0-2$
	8 to 12	N/A

RAMSES Series

GENERAL SPECIFICATIONS

OPERATING MODE			NORMALLY OPEN		LATCHING				
Nominal operating voltage (across operating temperature)		Vdc	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$	$\begin{gathered} 12 \\ (10.2 / 13) \end{gathered}$	$\begin{gathered} 28 \\ (24 / 30) \end{gathered}$			
Coil resistance (+/-10\%)		Ω	47.5	275102	See table on previous page				
Nominal operating current at $23^{\circ} \mathrm{C}$		mA	250						
Average power			See Power Rating Chart page 1-13						
TTL input		High Level	2.2 to 5.5 V (TTL Option)						
		3.5 to 5.5V (BCD Option)	$800 \mu \mathrm{~A}$ max 5.5 volts						
		Low Level	0 to 0.8 V (TTL Option)						
		0 to 1.5 V (BCD Option)	$20 \mu \mathrm{Amax} 0.8$ volts						
Indicator rating			$1 \mathrm{~W} / 30 \mathrm{~V} / 100 \mathrm{~mA}$						
Switching time (max)			ms	15 msFor automatic reset models: SP3T to SP6T $=40 \mathrm{~ms}$SP8T to SP12T $=50 \mathrm{~ms}$					
Non-terminated SP3 to 6T (R573 series)			2 million cycles						
Life (min)	Terminated SP3 to 6T (R574 series)								
	SP8 to 12T (all models)								
Connectors			N-TNC-BNC						
Actuator terminals			Solder pins or male 25 pin D-Sub connector						
Operating temperature range			$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
Storage temperature range			$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
Vibration (MIL STD 202, method 204D, cond.C)			$10-2,000 \mathrm{~Hz}, 10 \mathrm{~g}$		operating				
Shock (MIL STD 202, method 213B, cond.C)			$50 \mathrm{~g} / 1 \mathrm{~ms}, 1 / 2$ sine		operating				

RF PERFORMANCE

N - TNC - BNC Connector

NUMBER OF POSITIONS	FREQUENCY RANGE GHz		V.S.W.R. (MAX)	INSERTION LOSS (MAX) dB	ISOLATION (MIN) dB	$\begin{aligned} & \text { IMPEDANCE } \\ & \Omega \end{aligned}$
3 to 6	DC-12.4	DC-3	1.20	0.20	80	50
		3-8	1.35	0.35	70	
		8-12.4	1.50	0.50	60	
8 \& 10	DC-8	DC-3	1.30	0.30	80	
		3-8	1.50	0.50	70	
12	DC-8	DC-3	1.35	0.50	70	
		3-8	1.70	1.00	60	

Notes

See page 5-29 for typical RF performance.

RAMSES Series

R573 \& R574 TYPICAL PERFORMANCE

Example: SP6T N up to 12.4 GHz

INSERTION LOSS \& ISOLATION

Example: SP6T TNC up to 12.4 GHz

INSERTION LOSS \& ISOLATION

Example: SP8T up to 8 GHz

INSERTION LOSS \& ISOLATION

V.S.W.R

V.S.W.R

V.S.W.R

RAMSES Series

TYPICAL OUTLINE DRAWINGS

Terminated or non-terminated 3 to 12 positions
8 POSITIONS 8 GHz WITH SOLDER PINS MODEL

TYPE	B MAX (MM [INCHES])	
	SOLDER PINS	D-SUB CONNECTOR
Type 0-1-2 or 3 with option 0-1-3 or 4	56 [2.205]	66 [2.598]
Type 0-1-2 or 3 with option 2 or 8	71 [2.80]	71 [2.80]
Type 4-5-8 or 9 with option 0-1-2 or 8		

NUMBER OF POSITIONS	C DIAMETER	D DIAMETER	E DIAMETER	F
$3-6$	$54[2.126]$	$44.7[1.732]$	$63.5[2.480]$	6 holes M4/60
8	$67.7[2.738]$	$58.9[2.283]$	$76.2[2.99]$	4 holes M4/90
10	$88.9[3.465]$	$76.2[2.992]$	$101.6[3.976]$	5 holes M4/72
12	$67.7[2.738]$	$101.6[3.976]$	$127[5]$	6 holes M4/60

Notes
All dimensions are in millimeters [inches].

RF CONNECTOR ALLOCATION FOR SPNT SERIES

ALL CONNECTORS
Connectors A: 1.6/5.6, QMA, SMA, SMA 2.9, 2.4 mm
Other Connectors: N, BNC, TNC

SPNT 3 WAYS

NON-TERMINATED VERSION		TERMINATED VERSION	
Up to 40 GHz models Without option Connectors A (except 2.4 mm)	Up to 40 GHz models With option Connectors A and other connectors (except 2.4 mm)	Up to 18 GHz models Connectors A and other connectors (except 2.4 mm)	26.5 GHz and 40 GHz models with SMA - SMA 2.9

SPNT 4 WAYS

NON-TERMINATED VERSION		TERMINATED VERSION	
Up to 50 GHz models Without option Connectors A	Up to 50 GHz models With option Connectors A and other connectors	Up to 18 GHz models Connectors A and other connectors (except 2.4 mm)	$26.5 \mathrm{GHz}, 40 \mathrm{GHz}$ and 50 GHz models with SMA - SMA 2.9 2.4 mm

SPNT 5 WAYS

NON-TERMINATED VERSION		TERMINATED VERSION	
Up to 40 GHz models Without option Connectors A (except 2.4 mm)	Up to 40 GHz models With option Connectors A and other connectors (except 2.4 mm)	Up to 18 GHz models Connectors A and other connectors (except 2.4 mm)	26.5 GHz and 40 GHz models with SMA - SMA 2.9

Connectors A: 1.6/5.6, QMA, SMA, SMA 2.9, 2.4 mm
Other Connectors: N, BNC, TNC

SPNT 6 WAYS

NON-TERMINATED VERSION		TERMINATED VERSION	
Up to 50 GHz models Without Option Connectors A	Up to 50 GHz models With Option Connectors A and other connectors	Up to 22 GHz models Connectors A and other connectors	26.5 GHz, 40 GHz and 50 GHz models with SMA - SMA 2.9 2.4 mm

SPNT 8 WAYS	SPNT 10 WAYS	SPNT 12 WAYS
SMA and N connectors	SMA and N connectors	SMA and N connectors

COAXIAL SPNT - ACCESSORIES
 PRINTED CIRCUIT BOARD INTERFACE CONNECTOR

A printed circuit board interface connector (ordered separately) has been designed for easy mounting on terminals
For SPnT model R573 and R574 series: Radiall part number: R599 906000 for 3 to 6 positions, R599 908000 for 8 positions, R599 900000 for 10 positions, and R599 902000 for 12 positions.

($\varnothing 0.8$ [0.031] metallized holes, double side tracks)

($\varnothing 0.8$ [0.031] metallized holes, double side tracks)

R599900000

($\varnothing 0.8$ [0.031] metallized holes, double side tracks)

Accessories SPnT \& Electrical Schematics

Mounting Bracket

Two different metal brackets have been designed for an easy mechanical mounting of our SPnT switches with a circular flange for customer installation. These brackets must be ordered separately and assembled according to our recommended process on the Technical Data Sheets.

MODEL WITH SCREWS (R599320000)

Notes

All dimensions are in millimeters [inches].
For assembling process please see Technical Data Sheet.

GENERAL TOLERANCES: $\pm 0.5 \mathrm{MM}[0.02]$

Notes

All dimensions are in millimeters [inches].
This model can also be mounted on our SPnT switches with a square flange.
For adhesive bonding process please see Technical Data Sheet.

FOR MODELS WITH CONNECTORS SMA, QMA, SMA 2.9, 2.4 MM, DIN 1.6/5.6

NUMBER OF POSITIONS	MODEL	PART NUMBER
3 to 6 positions	R573 series	R599320000
	R574 series	R599920000
8 positions	R573 series	R599920000
	R574 series	
10 positions	R573 series	R599921000
	R574 series	
12 positions	R573 series	R599922000
	R574 series	

FOR MODELS WITH CONNECTORS N, TNC, BNC

NUMBER OF POSITIONS	MODEL	PART NUMBER
3 to 6 positions	R573 series	R599921000
8to 12 positions	R574 series	Not Available
	R573 series	N

MOUNTING SQUARE FLANGE

A square flange has been designed for easy mechanical mounting of our SPnT switches with a circular flange for customer installation. These flanges must be ordered separately (similar to the mounting bracket) and assembled according to our recommended process on the following page.

TYPICAL OUTLINE DRAWING

Accessories SPnT \& Electrical Schematics

MATERIAL: ALUMINIUM WITH CR3 PASSIVATION

RADIALL PART NUMBER	A (MM [INCHES])	B (MM [INCHES])	C (MM [INCHES])	D (MM [INCHES])	E (MM [INCHES])
R599 308 000	$57.15[2.244]$	$45.75[1.772]$	$27[1.063]$	$2[0.079]$	$9[0.354]$
R599 309 000	$57.15[2.244]$	$45.75[1.772]$	$44.70[1.732]$	$2[0.079]$	$9[0.354]$
R599 310 000	$63.45[2.480]$	$53.45[2.087]$	$27[1.063]$	$2[0.079]$	$9[0.354]$
R599 311 000	$63.45[2.480]$	$53.45[2.087]$	$44.70[1.732]$	$2[0.079]$	$9[0.354]$
R599 312 000	$63.45[2.480]$	$53.45[2.087]$	$44.70[1.732]$	$2[0.079]$	$9[0.354]$
R599 313000	$69.80[2.717]$	$59.80[2.323]$	$44.70[1.732]$	$5[0.079]$	$2[0.079]$
R599 314000	$74.60[2.913]$	$64.60[2.520]$	$55.88[2.165]$	$3[0.118]$	$9[0.354]$
R599 315 000	$71.10[2.795]$	$60.30[2.362]$	$44.70[1.732]$	$16.20[0.630]$	

FOR MODELS WITH CONNECTORS SMA, QMA, SMA 2.9, 2.4 MM, DIN 1.6/5.6

NUMBER OF POSITIONS	MODEL	PART NUMBER
3 to 6 positions	R573 series	R599310000
		R599308000
	R574 series	R599311000
		R599309000
8 positions	R573 series	R599312000
	R574 series	
10 positions	R573 series	R599313000
	R574 series	
12 positions	R573 series	R599314000
	R574 series	

FOR MODELS WITH CONNECTORS N, TNC, BNC

NUMBER OF POSITIONS	MODEL	PART NUMBER
3 to 6 positions	R573 series	R599315000

D-SUB CONNECTOR LOCATION

R573 \& R574
3 to 6 positions

R573 \& R574
10 positions

R573 \& R574
8 \& 12 positions

Notes

All dimensions are in millimeters [inches]. For assembling process please see Technical Data Sheet.

COAXIAL SPNT - ELECTRICAL SCHEMATICS
R573-R574 SERIES
NORMALLY OPEN

WITHOUT OPTION

R573-0--0- / R574-0--0-

Power input terminals

Actuators

RF inputs

WITH SUPPRESSION DIODES
R573-0--3- / R574-0--3-

WITH TTL DRIVER (SUPRESSION DIODES ARE INCLUDED) R573-0--2- / R574-0- -2-

WITH INDICATOR CONTACT
R573-1--0- / R574-1- -0-

Power input
terminals
Indicator
terminals

Actuators

RF inputs

WITH SUPPRESSION DIODES \& INDICATOR CONTACT R573-1--3- / R574-1- -3-

Power input
terminals
Indicator
terminals

Actuators

RF inputs

WITH TTL DRIVER \& INDICATOR CONTACT
(SUPRESSION DIODES ARE INCLUDED)
R573-1--2- / R574-1--2-

COAXIAL SPNT - ELECTRICAL SCHEMATICS (CONTINUED)
R573-R574 SERIES
NORMALLY OPEN

WITH BCD DRIVER, TTL COMPATIBLE
(SUPPRESSION DIODES ARE INCLUDED)
R573-0--8- / R574-0--8-

WITH POSITIVE COMMON
R573-0--1- / R574-0--1-

WITH POSITIVE COMMON AND SUPPRESSION DIODES R573-0--4- / R574-0- -4-

WITH BCD DRIVER, TTL COMPATIBLE \& INDICATOR CONTACT (SUPPRESSION DIODES ARE INCLUDED)
R573-1--8- / R574-1--8-

WITH POSITIVE COMMON AND INDICATOR CONTACT R573-1--1- / R574-1--1-

Power input terminals

Indicator terminals

Actuators

RF inputs

WITH POSITIVE COMMON, SUPPRESSION DIODES
\& INDICATOR CONTACT
R573-1--4- / R574-1- -4-

COAXIAL SPNT - ELECTRICAL SCHEMATICS
R573-R574 SERIES
LATCHING

WITH SUPPRESSION DIODES
R573-2--3- / R574-2- -3-

WITH TTL DRIVER (SUPRESSION DIODES ARE INCLUDED) R573-2--2- / R574-2--2-

WITH TTL DRIVER \& INDICATOR CONTACT
(SUPRESSION DIODES ARE INCLUDED)
R573-3--2- / R574-3- -2-

COAXIAL SPNT - ELECTRICAL SCHEMATICS (CONTINUED)
R573-R574 SERIES
LATCHING

WITH CUT-OFF (SUPPRESSION DIODES ARE INCLUDED) R573-4--0- / R574-4--0-

WITH CUT-OFF \& AUTO REST (SUPPRESSION DIODES ARE INCLUDED) R573-8--0- / R574-8--0-

WITH TTL DRIVER AND CUT-OFF (SUPPRESSION DIODES ARE INCLUDED) R573-4--2- / R574-4- -2-

WITH CUT-OFF AND INDICATOR CONTACT
(SUPPRESSION DIODES ARE INCLUDED)
R573-5--0- / R574-5- 0 -

WITH CUT-OFF, AUTO REST \& INDICATOR CONTACT (SUPPRESSION DIODES ARE INCLUDED)
R573-9--0- / R574-9--0-

WITH TTL DRIVER, CUT-OFF \& INDICATOR CONTACT (SUPPRESSION DIODES ARE INCLUDED)
R573-5--2- / R574-5- -2-

COAXIAL SPNT - ELECTRICAL SCHEMATICS (CONTINUED)
R573-R574 SERIES
LATCHING

WITH TTL DRIVER, CUT-OFF \& AUTO RESET (SUPPRESSION DIODES ARE INCLUDED) R573-8--2- / R574-8--2-

WITH CUT-OFF, FORCE OR AUTO RESET, BCD DRIVER, TTL COMPATIBLE (SUPPRESSION DIODES ARE INCLUDED) R573-8--8- / R574-8--8-

WITH POSITIVE COMMON
R573-2--1- / R574-2- -1-

WITH TTL DRIVER, CUT-OFF, AUTO RESET \& INDICATOR CONTACT (SUPPRESSION DIODES ARE INCLUDED) R573-9--2- / R574-9- -2-

WITH CUT-OFF, FORCE OR AUTO RESET, BCD DRIVER, TTL COMPATIBLE \& INDICATOR CONTACT (SUPPRESSION DIODES ARE INCLUDED) R573-9--8- / R574-9- -8-

WITH POSITIVE COMMON \& INDICATOR CONTACT (SUPRESSION DIODES ARE INCLUDED) R573-3--1- / R574-3- -1-

Power input terminals Indicator terminals

Actuators

RF inputs

COAXIAL SPNT - ELECTRICAL SCHEMATICS (CONTINUED)
R573-R574 SERIES
LATCHING

WITH POSITIVE COMMON \& SUPPRESSION DIODES (SUPPRESSION DIODES ARE INCLUDED)
R573-2--4- / R574-2--4-

WITH POSITIVE COMMON, CUT-OFF, AUTO RESET R573-8--1- / R574-8--1-

USB SERIES

NORMALLY OPEN WITH INDICATOR CONTACT
R573-11-01 / R574-11-01

WITH POSITIVE COMMON, SUPPRESSION DIODES \& INDICATOR CONTACT
R573-3--4- / R574 -3- -4-

WITH POSITIVE COMMON, CUT-OFF, AUTO RESET \& INDICATOR CONTACT
R573-9--1- / R574-9--1-

Titanium Series

HIGH PERFORMANCE MULTIPORT SWITCHES

SPNT UP TO 40 GHz

Radiall's TITANIUM switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 2.5 million switching cycles, Radiall's TITANIUM switches are a perfect solution for automated test and measurement equipment, as well as signal monitoring devices.
Example of P/N: R514F73617 is a SP6T SMA up to 26.5 GHz , Latching, Indicators, Self cut-off, Auto-Reset, 24 Vdc and HE10 receptacle.

PART NUMBER SELECTION

SERIES PREFIX
MODEL
3: Without 50Ω termination
4: With 50Ω termination

RF CONNECTORS

3: SMA up to 6 GHz
4: SMA up to 20 GHz
F: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}^{[1]}$
TYPE
7: Latching + Self cut-off + Auto Reset + Indicators
ACTUATOR VOLTAGE
3: 24 Vdc
NUMBER OF POSITIONS
4: 4 positions
6: 6 positions

OPTIONS*

1: Positive common (without TTL)
2: TTL/5 V logic with 24 Vdc supply ${ }^{[2]}$

ACTUATOR TERMINAL

7: HE 10 receptacle, delivered with 750 mm (30 inches) ribbon cable + HE10 connector

DOCUMENTATION

-: Certificate of conformity
C: Calibration certificate
R: Calibration certificate + RF curves

[^1]
Titanium Series

GENERAL SPECIFICATIONS

OPERATING MODE		LATCHING	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 / 32) \end{gathered}$	
Coil resistance (+/-10\%)	Ω	120	
Operating current at $23{ }^{\circ} \mathrm{C}$	mA	200	
Maximum stand-by current	mA	50	
Average power	All models	RF path Cold switching: See Power page 5-50 Hot switching: 1 Watt Cw	
		Internal terminations 1 Watt average into 50Ω	
TTL input	High level	3 to 7 V	1.4 mA max at Vcc $=\mathrm{Max}$
	Low level	0 to 0.8 Volts	-
Indicator specifications		Maximum withstanding voltage	60 V
		Maximum current capacity	150 mA
		Maximum "ON" resistance	2.5Ω
		Minimum "OFF" resistance	$100 \mathrm{M} \Omega$
Switching time (max)	ms	15	
Life (min)	SMA	2.5 million cycles	
	SMA 2.9	1 million cycles	
Connectors		SMA - SMA 2.9	
Actuator terminals		HE10 ribbon receptacle	
Weight (max)	g	230	

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}(10 \mathrm{cycles})$
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2,000 \mathrm{~Hz}, 10 \mathrm{~g}-$ operating
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine - operating
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10 \mathrm{days}$
Altitude storage (MIL STD 202, Method 105C, Cond.B)	$50,000 \mathrm{ft}(15,240 \mathrm{~meters})$
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55 dB at 20 GHz
Magnetic field	$<5.10-5$ gauss at 1 meter

Titanium Series

RF PERFORMANCE

PART NUMBER		$\begin{aligned} & \text { R51-3-34-7 } \\ & \text { R51-3-36-7 } \end{aligned}$	$\begin{aligned} & \text { R51-4-34-7 } \\ & \text { R51-4-36-7 } \end{aligned}$		$\begin{aligned} & \text { R51-F-34-7 } \\ & \text { R51-F-36-7 } \end{aligned}$		$\begin{aligned} & \text { R51-8-34-7 } \\ & \text { R51-8-36-7 } \end{aligned}$		
Frequency Range	GHz	DC to 6	DC to 20		DC to 26.5		DC to 40		
Impedance	Ω	50							
Insertion Loss (max)	dB	$0.3+0.015 \times$ frequency (GHz)							
Isolation (min)	dB	80	DC to 6 GHz		DC to 6 GHz	80	DC to 6 GHz	80	
			6 to 12.4 GHz		6 to 12.4 GHz	70	6 to 12.4 GHz	70	
			12.4 to 20 GHz		12.4 to 20 GHz	65	12.4 to 18 GHz	65	
			-		20 to 26.5 GHz	60	18 to 26.5 GHz	60	
			-		-		26.5 to 40 GHz	55	
V.S.W.R. (max)		1.20	DC to 6 GHz	1.20	DC to 6 GHz	1.20	DC to 6 GHz	1.20	
		6 to 12.4 GHz	1.35	6 to 12.4 GHz	1.35	6 to 12.4 GHz	1.35		
		12.4 to 20 GHz	1.45	12.4 to 20 GHz	1.45	12.4 to 18 GHz	1.45		
		-		20 to 26.5 GHz	1.70	18 to 26.5 GHz	1.70		
		-		-		26.5 to 40 GHz	1.90		
Third order inter Modulation			-120 dBC typical (2 carriers 20w)						
$\begin{aligned} & \text { Repeatability } \\ & \text { (measured at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$			0.03 dB					0.05 dB	

TYPICAL RF PERFORMANCE

INSERTION LOSS \& ISOLATION

SMA
V.S.W.R

SMA 2.9 -

Titanium Series

ELECTRONIC POSITION INDICATORS

The electronic position indicators use photo-MOS transistors, which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to a selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply (20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.

Pin number Function

2 Indicator Common

4 Indicator RF path 1

6 Indicator RF path 2

8 Indicator RF path 3

10 Indicator RF path 4

12 Indicator RF path 5

14 Indicator RF path 6

Notes

Ways 1 and 4 are not connected for SP4T switches.

Titanium Series

TYPE 7: WITH TTL (OPTION "2") / WITHOUT TTL (OPTION "1") \& INDICATORS

Each RF path can be closed by applying ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.

Mating cable connector

Standard drive option "1":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement), then apply ground to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are disconnected from ground. Complete the operation by applying ground to pin 16

TTL drive option " 2 ":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are in TTL "low" position (to prevent multiple RF path engagement), then apply TTL "high" to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position. Complete the operation by applying TTL "High" to pin 16

Break-Before-Make:

Open the undesired RF path for at least 15 minutes (minimum), then close the new RF port

Make-Before-Break:

Ensure that the previously selected RF path "drive" is connected to ground (or TTL "High" for option "2"), then close the new RF path

Notes

Ways 1 and 4 are not connected for SP4T switches.

Titanium Series

TYPICAL OUTLINE DRAWING

Notes

All dimensions are in millimeters [inches].
Ways 1 and 4 are not connected for SP4T switches.

Titanium Series

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1.

Notes
Ways 1 and 4 are not connected for SP4T switches.

HIGH PERFORMANCE MULTIPORT SWITCHES

SPNT TERMINATED UP TO 40 GHz

Radiall's PLATINUM series switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles, Radiall's PLATINUM series switches are a perfect solution for automated test and measurement equipment, as well as signal monitoring devices.

Example of P/N: R594873427 is a SPnT SMA 2.9 up to 40 GHz, Latching with Indicators, Self cut-off, Auto-Reset, TTL driver and HE10 connector.

PART NUMBER SELECTION

SERIES PREFIX

RF CONNECTORS

3: SMA up to 6 GHz
4: SMA up to 20 GHz
F: SMA up to 26.5 GHz
8: SMA 2.9 up to $40 \mathrm{GHz}^{[1]}$
TYPE
4: Latching + Self cut-off without indicator
7: Latching + Self cut-off + Auto Reset + Indicators
ACTUATOR VOLTAGE
3: 24 Vdc

NUMBER OF POSITIONS

4: 4 positions
6: 6 positions

OPTIONS

1: Positive common (without TTL)
2: TTL/5 V logic with 24 Vdc supply ${ }^{[283]}$

ACTUATOR TERMINAL

7: HE 10 receptacle, delivered with 750 mm (30 inches) ribbon cable + HE10 connector
DOCUMENTATION
-: Certificate of conformity
C: Calibration certificate
R: Calibration certificate + RF curves

Notes

Ways 1 and 4 are not connected for SP4T switches.

1. Connector SMA 2.9 is equivalent to "K connector ${ }^{\circledR ",}$, registered trademark of Anritsu
2. Polarity is not relevant to application for switches with TTL driver
3. Only available with type "7"

Platinum Series

GENERAL SPECIFICATIONS

OPERATING MODE		LATCHING	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 / 32) \end{gathered}$	
Coil resistance (+/-10\%)	Ω	120	
Operating current at $23{ }^{\circ} \mathrm{C}$	mA	200	
Maximum stand-by current	mA	50	
Average power		RF path Cold switching: See Power page 5-59 Hot switching: 1 Watt Cw	
		Internal terminations 1 Watt average into 50Ω	
TTL input	High level	3 to 7 V	1.4 mA max at Vcc $=\mathrm{Max}$
	Low level	0 to 0.8 Volts	-
Indicator specifications		Maximum withstanding voltage	60 V
		Maximum current capacity	150 mA
		Maximum "ON" resistance	2.5Ω
		Minimum "OFF" resistance	$100 \mathrm{M} \Omega$
Switching time (max)	ms	15	
Life (min)	SMA	10 million cycles	
	SMA 2.9	2.5 million cycles	
Connectors		SMA - SMA 2.9	
Actuator terminals		HE10 ribbon receptacle	
Weight (max)	g	230	

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL-STD-202, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C} \mathrm{to}+85^{\circ} \mathrm{C}(10 \mathrm{cycles})$
Vibration (MIL STD 202, Method 204D, Cond.D)	$10-2,000 \mathrm{~Hz}, 10 \mathrm{~g}-$ operating
Shock (MIL STD 202, Method 213B, Cond.C)	$50 \mathrm{~g} / 6 \mathrm{~ms}, 1 / 2$ sine - operating
Moisture resistance (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \% \mathrm{RH}, 10 \mathrm{days}$
Altitude storage (MIL STD 202, Method 105C, Cond.B)	$50,000 \mathrm{ft} \mathrm{(15,240} \mathrm{meters)}$
RFI (MIL STD 1344, Method 3008 or IEC 61726)	55 dB at 20 GHz
Magnetic field	$<5.10-5$ gauss at 1 meter

Platinum Series

RF PERFORMANCE

PART NUMBER		$\begin{gathered} \text { R5943-34-7 } \\ \text { DC to } 6 \end{gathered}$	$\begin{aligned} & \text { R5944-34-7 } \\ & \text { R5944-36-7 } \end{aligned}$		$\begin{aligned} & \text { R594F-34-7 } \\ & \text { R594F-36-7 } \end{aligned}$		$\begin{aligned} & \text { R5948-34-7 } \\ & \text { R5948-36-7 } \end{aligned}$		
Frequency Range	GHz		DC to 20		DC to 26.5		DC to 40		
Impedance	Ω	50							
Insertion Loss (max)	dB	$0.3+0.015 \times$ frequency (GHz)							
Isolation (min)	dB	100	DC to 6 GHz	100	DC to 6 GHz	100	DC to 6 GHz	100	
			6 to 12.4 GHz	90	6 to 12.4 GHz	90	6 to 12.4 GHz	90	
			12.4 to 20 GHz	80	12.4 to 20 GHz	80	12.4 to 18 GHz	80	
			-		20 to 26.5 GHz	70	18 to 26.5 GHz	70	
			-		-		26.5 to 40 GHz	60	
V.S.W.R. (max)		1.20	DC to 6 GHz	1.20	DC to 6 GHz	1.20	DC to 6 GHz	1.20	
		6 to 12.4 GHz	1.35	6 to 12.4 GHz	1.35	6 to 12.4 GHz	1.35		
		12.4 to 20 GHz	1.45	12.4 to 20 GHz	1.45	12.4 to 18 GHz	1.45		
		-		20 to 26.5 GHz	1.70	18 to 26.5 GHz	1.70		
		-		-		26.5 to 40 GHz	1.90		
Repeatability (measured at $25^{\circ} \mathrm{C}$)			0.03 dB					0.05 dB	

TYPICAL RF PERFORMANCE

SMA
V.S.W.R

SMA 2.9 —

Platinum Series

ELECTRONIC POSITION INDICATORS

(This option is not available with type 4)
The electronic position indicators use photo-MOS transistors, which are driven by the mechanical position of the RF paths moving elements. The circuitry consists of a common which can be connected to an output corresponding to selected RF path. If one or several RF paths are closed, the corresponding indicators are connected to the common. The photo-MOS transistors are configured for AC and/or DC operation. The electronic position indicators require the supply (20 to 32 VDC) to be connected to pin 1 and ground connected to pin 15.

Pin number Function

2 Indicator Common

4 Indicator RF path 1

6 Indicator RF path 2

8 Indicator RF path 3

10 Indicator RF path 4

12 Indicator RF path 5

14 Indicator RF path 6

Notes

Ways 1 and 4 are not connected for SP4T switches.

Platinum Series

DRIVING THE SWITCH

Each RF path is driven independently, and can be closed or open by applying ground to the corresponding "open" or "close" pin.

TYPE 4: WITHOUT TTL AND WITHOUT INDICATOR

Switch connector

Mating cable connector

Standard drive:

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin 3 to close RF path 1)
- To open desired RF path connect ground to the corresponding "open" pin (Ex: ground pin 4 to open RF path 1)
- To open all RF paths, first ensure that all RF path "close" pins are disconnected from ground, then to complete the operation, connect pin 16 to ground

Make-Before-Break:

Make-Before-Break switching can be accomplished by closing the new RF path before opening the previously selected RF path. To complete the operation, close the new RF port for at least 15 minutes (minimum), then open the previously selected RF port.

Notes

Ways 1 and 4 are not connected for SP4T switches.

Platinum Series

TYPE 7: WITH TTL (OPTION "2") / WITHOUT TTL (OPTION "1") \& INDICATORS

Each RF path can be closed by applying Ground or TTL "High" for option 2 to the corresponding "drive" pin. In general, except for Make-Before-Break drive, all other RF paths are simultaneously opened by internal logic.

Standard drive option " 1 ":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying ground to the corresponding "drive" pin (Ex: apply ground to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are disconnected from ground (to prevent multiple RF path engagement), then apply ground to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are disconnected from ground, then complete the operation by applying ground to pin 16

TTL drive option "2":

- Connect pin 15 to ground
- Connect pin 1 to supply (+20 VDC to +32 VDC)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin 3 to close RF path 1)
- To select another path, ensure that all unwanted RF path "drive" pins are in TTL "Low" position (to prevent multiple RF path engagement), then apply TTL "High" to the "drive" pin which corresponds to the desired RF path
- To open all RF paths, ensure that all RF path "drive" pins are in TTL "Low" position, then complete the operation by applying TTL "High" to pin 16

Break-Before-Make:

Open the undesired RF path after 15 minutes (minimum), then close the new RF port.

Make-Before-Break:

Ensure that the previously selected RF path "drive" is connected to ground (or TTL "High" for option "2"), then close the new RF path.

Notes

Ways 1 and 4 are not connected for SP4T switches.

TYPICAL OUTLINE DRAWING

SMA 2.9 CONNECTORS

Notes
All dimensions are in millimeters [inches]. Ways 1 and 4 are not connected for SP4T switches.

Platinum Series

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS VSWR

The average power input must be reduced for load V.S.W.R. above 1:1.

OPTIONAL FEATURES

EXAMPLES OF DEDICATED APPLICATION OPTIONS

SPnT with flat ribbon cable for easy installation with limited space.

SPnT models can be fitted with external loads (up to 50 GHz) for an easy maintenance of equipment.

SP3T used for a military application with sequential access and severe environmental characteristics.

Thermal vacuum SPnT up to 50 GHz designed based on our expertise in Space. For more detailed information, see page 7-18 to 7-20.

7P6T switch for a Custom Matrix Switch (4P3T) with 4 Input ports and 4 Output ports configured for 3 transmission systems and one redundancy channel $(\mathrm{N}+1$: N type) for example.

Unterminated SP3-6T with 9 pins D-sub connector instead of solder pins.

[^0]: Notes

 1. Compatible with 2.54 mm pitch double row and HE10 connector.
 2. Available with "solder pins" models only.
[^1]: Notes

 1. Connector SMA 2.9 is equivalent to "K connector", registered trademark of Anritsu.
 2. Polarity is not relevant to application for switches with TTL driver
