Radiall's PLATINUM series switches are optimized to perform at a high level over an extended life cycle. With outstanding RF performance, and a guaranteed insertion loss repeatability of 0.03 dB over a life span of 10 million switching cycles. PLATINUM series switches are perfect for automated test and measurement equipment, as well as signal monitoring devices.
Example of P/N:
R595F63215 is a Terminated SPDT SMA 26.5 GHz , latching with Self Cut-Off, 24Vdc, Indicators, D-Sub connector.

PART NUMBER SELECTION

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

GENERAL SPECIFICATIONS

Operating mode		Latching	
Nominal operating voltage (across operating temperature)	Vdc	$\begin{gathered} 24 \\ (20 \text { to } 32) \end{gathered}$	$\begin{gathered} 15 \\ (12 \text { to } 20) \end{gathered}$
Coil resistance (+/-10\%)	Ω	175	60
Nominal operating current at $23^{\circ} \mathrm{C}$	mA	140	250
Average power		RF path Cold switching: see Power Chart on page 3-21 Hot switching: 1 Watt CW	
		Internal terminations 1 Watt average into 50Ω External terminations 0.5 Watt average into 50Ω	
TTL input	High Level	3 to 7 V : $800 \mu \mathrm{~A} \mathrm{max}$ at 7 V	
	Low Level	0 to $0.8 \mathrm{~V}: 20 \mu \mathrm{Amax}$ at 0.8 V	
Switching time (Max)	ms	15	
Life (Min)	SMA	10 million cycles	
	SMA2.9	5 million cycles	
Connectors		SMA - SMA2.9	
Actuator terminals		D-Sub 9 pin female Solder pins	
Weight	g	<100	

ENVIRONMENTAL SPECIFICATIONS

Operating temperature range	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage temperature range	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Temperature cycling (MIL STD 202F, Method 107D, Cond.A)	$-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (10 cycles)
Sine vibration operating (MIL STD 202, Method 204D, Cond.D)	$10-2000 \mathrm{~Hz}, 20 \mathrm{~g}$
Random vibration operating	$16.91 \mathrm{G}(\mathrm{rms}) 50-2000 \mathrm{~Hz} 3 \mathrm{~min} / \mathrm{axis}$
Shock operating (MIL STD 202, Method 213B, Cond.G)	$50 \mathrm{~g} / 11 \mathrm{~ms}$, sawtooth
Humidity operating	15 to 95% relative humidity
Humidity storage (MIL STD 202, Method 106E, Cond.E)	$65^{\circ} \mathrm{C}, 95 \%$ RH, 10 days
Altitude operating	15,000 feet (4,600 meters)
Altitude storage (MIL STD 202, Method 105C, Cond.B)	50,000 feet (15,240 meters)

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9
RF PERFORMANCES

Part Number	R5953-----	R5954-----		R595F-----		R5958-----	
Frequency Range GHz	DC to 6	DC to 20		DC to 26.5		DC to 40	
Impedance $\quad \Omega$	50						
Insertion Loss (max) dB	$0.20+(0.45 / 26.5) \mathrm{x}$ frequency (GHz)						
Isolation (Min)	85	$\begin{gathered} \mathrm{DC} \text { to } 6 \mathrm{GHz} \\ \text { 6 to } 12.4 \mathrm{GHz} \\ 12.4 \text { to } 20 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & 85 \\ & 75 \\ & 65 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz	$\begin{gathered} 85 \\ 75 \\ 65 \\ 60 \mathrm{w} \end{gathered}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 20 GHz 20 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 85 \\ & 75 \\ & 65 \\ & 60 \\ & 55 \end{aligned}$
V.S.W.R. (Max)	1.15	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 20 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \end{aligned}$	DC to 6 GHz 6 to 12.4 GHz 12.4 to 18 GHz 18 to 26.5 GHz 26.5 to 40 GHz	$\begin{aligned} & 1.15 \\ & 1.25 \\ & 1.30 \\ & 1.60 \\ & 1.80 \end{aligned}$
Repeatability (Up to 10 million cycles measured at $25^{\circ} \mathrm{C}$)	0.03 dB maximum					0.05 dB maximum	

SMA - SMA $2.9=$

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: TERMINATED SPDT SWITCH

The terminated SPDT switch is a single pole double throw switch where unused ports are terminated into 50 ohms. This switch is considered a "break before make".

RF SCHEMATIC DIAGRAM

Position E1

POSITION INDICATORS

State 11

Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and close RF path 2-3)

D-sub Connector

Solder Pins

Position E2

State 22

TTL drive option " 2 "

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin. (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path. (Ex: apply TTL "High" to pin E2 to open RF path 1-2 and close RF path 2-3)

D-sub Connector

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: TERMINATED SPDT SWITCH

With D-Sub connector

4-40 UNC

With solder pins

8 pins $\varnothing 0.04$ / 1

All dimensions are in inches/millimeters

Connectors	A max linches $/ \mathrm{mm})$	B max linches $/ \mathrm{mm}$)	Terminations
SMA up to 26.5 GHz	$0.291 / 7.40$	$0.067 / 1.70$	Internal
SMA 2.9 up to 40 GHz	$0.248 / 6.30$	$0.748 / 19.0$	External

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: TERMINATED 4 PORT SWITCH

The terminated 4 port bypass switch can terminate into the 50 ohms device under test.
This switch is considered a "break before make".

RF SCHEMATIC DIAGRAM

Position E1

POSITION INDICATORS

State 11

Standard drive option "1"

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 1-2 and RF path
3-4 closed and RF path 2-3 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3)

State 22

TTL drive option " 2 ":

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TL
"High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 1-2 and 3-4 closed and RF path 2-3 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path (Ex: apply TTL "High" to pin E2 to open RF path 1-2 and 3-4 and close RF path 2-3)

D-Sub connector

Solder pins

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: TERMINATED 4 PORT BYPASS SWITCH

With D-Sub connector

4-40 UNC

With solder pins

8 pins $\varnothing 0.04 / 1$

All dimensions are in inches/millimeters

Connectors	A max (inches $/ \mathrm{mm}$)	B max linches $/ \mathbf{m m}$)	Terminations
SMA up to 26.5 GHz	$0.291 / 7.40$	$0.067 / 1.70$	Internal
SMA 2.9 up to 40 GHz	$0.248 / 6.30$	$0.748 / 19.0$	External

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: 5 PORT DP3T SWITCH

The non terminated 5 port DP3T switch can be used as SPDT with high power terminations, as a bypass switch. In this application, the fifth port can be terminated externally with a high power termination.
These switches are considered a "break before make".

RF SCHEMATIC DIAGRAM

POSITION INDICATORS

State 11

Standard drive option " 1 "

(Positive common):

- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select desired RF path by applying ground to the corresponding "close" pin (Ex: ground pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and RF path 3-4 open)
- To open desired path and close the new RF path, connect ground to the corresponding "close" pin (Ex: ground pin E2 to open RF path 2-3 and 4-5 and close RF path 1-2 and 3-4)

D-Sub connector

Solder pins

Position E2

State 22

TTL drive option " 2 ":

- Connect pin GND to ground
- Connect pin +Vcc to supply (+20 Vdc to +32 Vdc)
- Select (close) desired RF path by applying TTL "High" to the corresponding "drive" pin (Ex: apply TTL "High" to pin E1 to switch to position E1. RF path 2-3 and RF path 4-5 closed and RF path 1-2 and 3-4 open)
- To open desired path and close the new RF path, apply TTL "High" to the "drive" pin which corresponds to the desired RF path. (Ex: apply TTL "High" to pin E2 to open RF path 2-3 and $4-5$ and close RF path 1-2 and 3-4)

Solder pins

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

SWITCH MODEL: 5 PORT DP3T SWITCH

With D-Sub connector

With solder pins

All dimensions are in inches/millimeters

Connectors	A max linches $/ \mathrm{mm}$)
SMA up to 26.5 GHz	$0.291 / 7.40$
SMA 2.9 up to 40 GHz	$0.248 / 6.30$

High performance DP3T \& Terminated SPDT up to 40 GHz
SMA - SMA 2.9

POWER RATING CHART

This graph is based on the following conditions:

- Ambient temperature: $+25^{\circ} \mathrm{C}$
- Sea level
- V.S.W.R.: 1 and cold switching

DERATING FACTOR VERSUS V.S.W.R.

The average power input must be reduced for load V.S.W.R. above 1.1

Optional features for DP3T switches

GENERAL

RADIALL DP3T / SPDT terminated are designed only with SMA connectors.

Examples of dedicated applications
Θ

This SPDT terminated switch is composed of a DP3T with SMA connectors, and cable load for medium power terminations. The Key advantage of this solution is the ability to mount the switch with external terminations at the desired power level.

For all other connectors (N, BNC etc..), the same function as SPDT terminated can be easily performed with a standard DPDT and an external load.

POS 1 : J1 to J2 / J3 to load

This is an example of an SPDT terminated switch that was designed with 2 seperate coils for a specific test network application.

